441
Views
9
CrossRef citations to date
0
Altmetric
Articles

Mechanism of methane adsorption on groove space in organic matter surface

, , , &
Pages 186-198 | Received 14 Aug 2018, Accepted 02 Nov 2018, Published online: 21 Nov 2018

References

  • Curtis JB. Fractured shale-gas systems. Am Assoc Pet Geol Bull. 2002;86(11):1921–1938.
  • Han S, Zhang J, Yang C, et al. The characteristics of nanoscale pore and its gas storage capability in the lower Cambrian shale of southeast Chongqing. J China Coal Soc. 2013;38:1038–1043.
  • Loucks RG, Reed RM, Ruppel SC, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res. 2009;79:848–861. doi: 10.2110/jsr.2009.092
  • Xue H, Wang H, Liu H, et al. Adsorption capability and aperture distribution characterisitics of shales: taking the Longmaxi formation shale of Sichuan Basin as an example. Acta Petrolei Sinica. 2013;34:826–832.
  • Cao T, Song Z, Wang S, et al. A comparative study of the specific surface area and pore structure of different shales and their kerogens. Sci China Earth Sci. 2015;58:510–522. doi: 10.1007/s11430-014-5021-2
  • Chalmers GRL, Bustin RM. The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada. Int J Coal Geol. 2007;70:223–239. doi: 10.1016/j.coal.2006.05.001
  • Liu H, Yuan P, Qin Z, et al. Thermal degradation of organic matter in the interlayer clay–organic complex: a TG-FTIR study on a montmorillonite/12-aminolauric acid system. Appl Clay Sci. 2013; 80–81:398-406. doi: 10.1016/j.clay.2013.07.005
  • Ross DJK, Bustin RM. Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bull Can Pet Geol. 2007;55:51–75. doi: 10.2113/gscpgbull.55.1.51
  • Ross DJK, Bustin RM. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation. Am Assoc Pet Geol Bull. 2008;92:87–125.
  • Lin K, Yuan Q, Zhao Y-P. Using graphene to simplify the adsorption of methane on shale in MD simulations. Comput Mater Sci. 2017;133:99–107. doi: 10.1016/j.commatsci.2017.03.010
  • Wang S, Feng Q, Zha M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter. Pet Explor Dev. 2015;42:772–778.
  • Liu Y, Zhu Y, Li W, et al. Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution. J Nat Gas Sci Eng. 2016;30:119–126. doi: 10.1016/j.jngse.2016.01.046
  • Mosher K, He J, Liu Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int J Coal Geol. 2013;109-110:36–44. doi: 10.1016/j.coal.2013.01.001
  • Sun R, Zhang Y, Fan K, et al. Molecular simulations of adsorption characteristics of clay minerals in shale. Ciesc J. 2015;66:2118–2122.
  • Xiong J, Liu X, Liang L, et al. Methane adsorption on carbon models of the organic matter of organic-rich Shales. Energy Fuels. 2017;31:1489–1501. doi: 10.1021/acs.energyfuels.6b03144
  • Xiong J, Liu X, Liang L, et al. Adsorption of methane in organic-rich shale nanopores: an experimental and molecular simulation study. Fuel. 2017;200:299–315. doi: 10.1016/j.fuel.2017.03.083
  • Zhai Z, Wang X, Jin X, et al. Adsorption and diffusion of shale Gas reservoirs in modeled clay minerals at different geological depths. Energy Fuels. 2014;28:7467–7473. doi: 10.1021/ef5023434
  • Zhang J, Clennell MB, Liu K, et al. Methane and carbon dioxide adsorption on Illite. Energy Fuels. 2016;30:10643–10652. doi: 10.1021/acs.energyfuels.6b01776
  • Sui H, Yao J. Effect of surface chemistry for CH 4 /CO 2 adsorption in kerogen: a molecular simulation study. J Nat Gas Sci Eng. 2016;31:738–746. doi: 10.1016/j.jngse.2016.03.097
  • Wang Z, Li Y, Liu H, et al. Study on the adsorption, diffusion and permeation. Energies. 2017;10:1–15.
  • Zhang H, Zeng X, Zhao Z, et al. Adsorption and selectivity of CH4 /CO2 in functional group rich organic shales. J Nat Gas Sci Eng. 2017;39:82–89. doi: 10.1016/j.jngse.2017.01.024
  • Jiao H, Dong M, Liu Z, et al. Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface. J China Univ Pet. 2014;38:178–183.
  • Jin Z, Firoozabadi A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilib. 2013;360:456–465. doi: 10.1016/j.fluid.2013.09.047
  • Jin Z, Firoozabadi A. Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilib. 2014;382:10–20. doi: 10.1016/j.fluid.2014.07.035
  • Sun H, Sun W, Zhao H, et al. Adsorption properties of CH4 and CO2 in quartz nanopores studied by molecular simulation. RSC Adv. 2016;6(39):32770–32778. doi:10.1039/c6ra05083b.
  • Sun H, Zhao H, Qi N, et al. Mechanistic insight into the displacement of CH4 by CO2 in calcite slit nanopores: the effect of competitive adsorption. RSC Adv. 2016;6(106):104456–104462. doi:10.1039/c6ra23456a.
  • Chen S, Zhu Y, Qin Y, et al. Reservoir evaluation of the lower Silurian Longmaxi formation shale gas in the southern Sichuan Basin of China. Mar Pet Geol. 2014;57:619–630. doi: 10.1016/j.marpetgeo.2014.07.008
  • Chen S, Zhu Y, Wang H, et al. Shale Gas reservoir characterisation: a typical case in the southern Sichuan Basin of China. Energy. 2011;36:6609–6616. doi: 10.1016/j.energy.2011.09.001
  • Zou C, Dong D, Wang Y, et al. Shale gas in China: characteristics, challenges and prospects (I). Pet Explor Dev. 2015;42:753–767. doi: 10.1016/S1876-3804(15)30072-0
  • Zou C, Dong D, Wang Y, et al. Shale gas in China: characteristics, challenges and prospects (II). Pet Explor Dev. 2016;43:182–196. doi: 10.1016/S1876-3804(16)30022-2
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. doi: 10.1021/ja01269a023
  • Chen S, Zhu Y, Wang H, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin. J China Coal Soc. 2012;37:438–444.
  • Wang Y, Zhu Y, Chen S, et al. Characteristics of the nanoscale pore structure in northwestern Hunan Shale Gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion, and gas adsorption. Energy Fuels. 2014;28:945–955. doi: 10.1021/ef402159e
  • Tang X, Jiang Z, Li Z, et al. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J Nat Gas Sci Eng. 2015;23:464–473. doi: 10.1016/j.jngse.2015.02.031
  • Yang C, Zhang J, Tang X, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int J Coal Geol. 2017;171:76–92. doi: 10.1016/j.coal.2016.12.001
  • Yang R, He S, Hu Q, et al. Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China. Mar Pet Geol. 2016;77:247–261. doi: 10.1016/j.marpetgeo.2016.06.001
  • Wu H, Chen J, Liu H. Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. J Phys Chem C. 2015;119:13652–13657. doi: 10.1021/acs.jpcc.5b02436
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102:2569–2577. doi: 10.1021/jp972543+
  • Sun H. Compass:  An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–7364. doi: 10.1021/jp980939v
  • Xiong J, Liu X, Liang L, et al. Adsorption behavior of methane on kaolinite. Ind Eng Chem Res. 2017;56:6229–6238. doi: 10.1021/acs.iecr.7b00838
  • Xiong J, Liu X, Liang L, et al. Investigation of methane adsorption on chlorite by grand canonical Monte Carlo simulations. Pet Sci. 2017;14:37–49. doi: 10.1007/s12182-016-0142-1
  • Liu Y, Wilcox J. Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity. Int J Coal Geol. 2012;104:83–95. doi: 10.1016/j.coal.2012.04.007
  • Reid RC, Prausnitz JM, Poling BE. The Properties Of Gases & Liquids. 1988:38.
  • Willard Gibbs JW. The collected works of J. Willard Gibbs. New York: Longmans, Green and Company; 1928. 55.
  • Talu O, Myers AL. Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment. Aiche J. 2001;47:1160–1168. doi: 10.1002/aic.690470521
  • Sing KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. 1985;57:603–619. doi: 10.1351/pac198557040603
  • Dong CM, Ma CF, Luan GQ, et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Sedimentologica Sinica. 2015;33:1053–1061.
  • Zhang R, Ning Z, Yang F, et al. Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales. J Nat Gas Sci Eng. 2015;26:1663–1672. doi: 10.1016/j.jngse.2015.02.001
  • Brunauer S, Deming LS, Deming WE, et al. On a theory of the van der Waals adsorption of gases. J Am Chem Soc. 1940;62:1723–1732. doi: 10.1021/ja01864a025
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Chem Phys. 2015;40:1361–1403.
  • Lu Y, Peng J. Study on acoustic characteristics of supercritical carbon dioxide by liquid acoustics theory. Acta Phys Sin. 2008;57:1030–1036.
  • Wang Z, Li Y, Liu H, et al. Study on the adsorption, diffusion and permeation selectivity of shale gas in organics. Energies. 2017;10(1):142, doi:10.3390/en10010142.
  • Song H, Yin X. Molecular dynamics method for simulating diffusivities. Chin J Chem Phys. 2005;18:719–723.
  • Bi H, Jiang Z, Li J, et al. The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J Nat Gas Sci Eng. 2016;35:114–121. doi:10.1016/j.jngse.2016.08.047.
  • Bi H, Jiang Z, Li P, et al. Adsorption characteristic and influence factors of Longmaxi Shale in Southeastern Chongqing. Nat Gas Geosci. 2014;25(2):302–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.