2,586
Views
16
CrossRef citations to date
0
Altmetric
Articles

Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 336-350 | Received 29 Aug 2018, Accepted 06 Nov 2018, Published online: 28 Nov 2018

References

  • Poirier J. Rheology of ices: a key to the tectonics of the ice moons of Jupiter and Saturn. Nature. 1982;299:683. doi: 10.1038/299683a0
  • Gallo P, Amann-Winkel K, Angell CA, et al. Water: a tale of two liquids. Chem Rev. 2016;116:7463–7500. doi: 10.1021/acs.chemrev.5b00750
  • Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J Phys Chem Lett. 2014;5:3863–3871. doi: 10.1021/jz501780a
  • Onufriev AV, Izadi S. Water models for biomolecular simulations. WIREs Comput Mol Sci. 2018;8:e1347. doi: 10.1002/wcms.1347
  • Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13:19663–19688. doi: 10.1039/c1cp22168j
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq. 2002;101:219–260. doi: 10.1016/S0167-7322(02)00094-6
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Tröster P, Lorenzen K, Tavan P. Polarizable six-point water models from computational and empirical optimization. J Phys Chem B. 2014;118:1589–1602. doi: 10.1021/jp4125765
  • Finney JL. The water molecule and its interactions: the interaction between theory, modelling, and experiment. J Mol Liq. 2001;90:303–312. doi: 10.1016/S0167-7322(01)00134-9
  • Ball P. Water as an active constituent in cell biology. Chem Rev. 2008;108:74–108. doi: 10.1021/cr068037a
  • Vega C, Abascal JLF, Conde MM, et al. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 2009;141:251–276. doi: 10.1039/B805531A
  • Castillo J, Dubbeldam D, Vlugt TJH, et al. Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Mol Simul. 2009;35:1067–1076. doi: 10.1080/08927020902865923
  • Castillo JM, Silvestre-Albero J, Rodriguez-Reinoso F, et al. Water adsorption in hydrophilic zeolites: experiment and simulation. Phys Chem Chem Phys. 2013;15:17374–17382. doi: 10.1039/c3cp52910j
  • Ball P. Water: water – an enduring mystery. Nature. 2008;452:291–292. doi: 10.1038/452291a
  • Chopra G, Summa CM, Levitt M. Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci. 2008;105:20239–20244. doi: 10.1073/pnas.0810818105
  • Rahbari A, Ramdin M, van den Broeke LJP, et al. Combined steam reforming of methane and formic acid to produce syngas with an adjustable H2:CO ratio. Ind Eng Chem Res. 2018; DOI:10.1021/acsiecr8b02443, in press.
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • Wang LP, Head-Gordon T, Ponder JW, et al. Systematic improvement of a classical molecular model of water. J Phys Chem B. 2013;117:9956–9972. doi: 10.1021/jp403802c
  • Halgren TA, Damm W. Polarizable force fields. Curr Opin Struct Biol. 2001;11:236–242. doi: 10.1016/S0959-440X(00)00196-2
  • Jiang H, Moultos OA, Economou IG, et al. Hydrogen-bonding polarizable intermolecular potential model for water. J Phys Chem B. 2016;120:12358–12370. doi: 10.1021/acs.jpcb.6b08205
  • Gladich I, Roeselov M. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice Ih. Phys Chem Chem Phys. 2012;14:11371–11385. doi: 10.1039/c2cp41497j
  • Chen B, Xing J, Siepmann JI. Development of polarizable water force fields for phase equilibrium calculations. J Phys Chem B. 2000;104:2391–2401. doi: 10.1021/jp993687m
  • Yesylevskyy SO, Schäfer LV, Sengupta D, et al. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol. 2010;116:1–17
  • Kunz APE, van Gunsteren WF. Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. J Phys Chem A. 2009;113:11570–11579. doi: 10.1021/jp903164s
  • Lamoureux G, MacKerell AD, Roux B. A simple polarizable model of water based on classical drude oscillators. J Chem Phys. 2003;119:5185–5197. doi: 10.1063/1.1598191
  • Lamoureux G, Harder E, Vorobyov IV, et al. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett. 2006;418:245–249. doi: 10.1016/j.cplett.2005.10.135
  • Ren P, Ponder JW. Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B. 2003;107:5933–5947. doi: 10.1021/jp027815+
  • Laury ML, Wang LP, Pande VS, et al. Revised parameters for the AMOEBA polarizable atomic multipole water model. J Phys Chem B. 2015;119:9423–9437. doi: 10.1021/jp510896n
  • Becker TM, Dubbeldam D, Lin LC, et al. Investigating polarization effects of CO2 adsorption in MgMOF-74. J Comput Sci. 2016;15:86–94. doi: 10.1016/j.jocs.2015.08.010
  • Antila HS, Salonen E. Polarizable force fields. In: Monticelli L, Salonen E, editors. Biomolecular simulations: methods and protocols. Chapter 9. Totowa, NJ: Humana Press; 2013. p. 215–241.
  • Rick SW, Stuart SJ. Potentials and algorithms for incorporating polarizability in computer simulations. In: Lipkowitz KB, Salonen DB Boyd, editors. Reviews in computational chemistry. Vol. 18; Chapter 3. Hoboken (NJ): Wiley-VCH; 2002. p. 89–146
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–9960. doi: 10.1021/jp003020w
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112:8910–8922. doi: 10.1063/1.481505
  • Rick SW. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J Chem Phys. 2004;120:6085–6093. doi: 10.1063/1.1652434
  • Nada H, van der Eerden JPJM. An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. J Chem Phys. 2003;118:7401–7413. doi: 10.1063/1.1562610
  • Martínez-Jiménez M, Saint-Martin H. A four-site molecular model for simulations of liquid methanol and water–methanol mixtures: MeOH-4P. J Chem Theory Comput. 2018;14:2526–2537. doi: 10.1021/acs.jctc.7b01265
  • Dopazo-Paz A, Gómez-Álvarez P, González-Salgado D. Thermodynamics and structure of the {water+ methanol} system viewed from three simple additive pair-wise intermolecular potentials based on the rigid molecule approximation. Collect Czech Chem Commun. 2010;75:617–635. doi: 10.1135/cccc2009097
  • Moučka F, Nezbeda I. Water–methanol mixtures with non-Lorentz-Berthelot combining rules: a feasibility study. J Mol Liq. 2011;159:47–51. doi: 10.1016/j.molliq.2010.05.005
  • Dougan L, Bates SP, Hargreaves R, et al. Methanol–water solutions: a bi-percolating liquid mixture. J Chem Phys. 2004;121:6456–6462. doi: 10.1063/1.1789951
  • Ferrario M, Haughney M, McDonald IR, et al. Molecular-dynamics simulation of aqueous mixtures: methanol, acetone, and ammonia. J Chem Phys. 1990;93:5156–5166. doi: 10.1063/1.458652
  • Mallamace F, Corsaro C, Mallamace D, et al. Dynamical properties of water–methanol solutions. J Chem Phys. 2016;144:064506.
  • Matsumoto M, Takaoka Y, Kataoka Y. Liquid-vapor interface of water–methanol mixture. I. computer simulation. J Chem Phys. 1993;98:1464–1472. doi: 10.1063/1.464310
  • Wensink EJW, Hoffmann AC, van Maaren PJ, et al. Dynamic properties of water/alcohol mixtures studied by computer simulation. J Chem Phys. 2003;119:7308–7317. doi: 10.1063/1.1607918
  • González-Salgado D, Nezbeda I. Excess properties of aqueous mixtures of methanol: simulation versus experiment. Fluid Phase Equilib. 2006;240:161–166. doi: 10.1016/j.fluid.2005.12.007
  • Wormald C, Badock L, Lloyd M. Excess enthalpies for (water + methanol) at T= 423 K to T= 523 and pressures up to 20 MPa. a new flow mixing calorimeter. J Chem Thermodyn. 1996;28:603–613. doi: 10.1006/jcht.1996.0057
  • Wormald C, Yerlett T. Molar enthalpy increments for (0.5 H2O + 0.5 CH3OH) at temperatures up to 573.2 K and pressures up to 13.0 MPa. J Chem Thermodyn. 2000;32:97–105. doi: 10.1006/jcht.1999.0573
  • Simonson J, Bradley D, Busey R. Excess molar enthalpies and the thermodynamics of (methanol + water) to 573 K and 40 MPa. J Chem Thermodyn. 1987;19:479–492. doi: 10.1016/0021-9614(87)90145-5
  • Kuroki T, Kagawa N, Endo H, et al. Specific heat capacity at constant volume for water, methanol, and their mixtures at temperatures from 300 K to 400 K and pressures to 20 MPa. J Chem Eng Data. 2001;46:1101–1106. doi: 10.1021/je0002437
  • Xiao C, Bianchi H, Tremaine PR. Excess molar volumes and densities of (methanol+water) at temperatures between 323 K and 573 K and pressures of 7.0 MPa and 13.5 MPa. J Chem Thermodyn. 1997;29:261–286. doi: 10.1006/jcht.1996.0145
  • Lama R, Lu BCY. Excess thermodynamic properties of aqueous alcohol solutions. J Chem Eng Data. 1965;10:216–219. doi: 10.1021/je60026a003
  • Vlček L, Nezbeda I. Excess properties of aqueous mixtures of methanol: simple models versus experiment. J Mol Liq. 2007;131–132:158–162. doi: 10.1016/j.molliq.2006.08.052
  • Tomaszkiewicz I, Randzio S, Gierycz P. Excess enthalpy in the methanol–water system at 278.15, 298.15 and 323.15 K under pressures of 0.1, 20 and 39 MPa: II. experimental results and their analytical presentation. Thermochimica Acta. 1986;103:281–289. doi: 10.1016/0040-6031(86)85164-4
  • Gmehling J, Onken U, Arlt W, et al. Chemistry data series, vapor–liquid equilibrium data collection, vol. 1, part 1c. 1st ed. Frankfurt am Main, Germany: DECHEMA; 1986.
  • Mikhail SZ, Kimel WR. Densities and viscosities of methanol–water mixtures. J Chem Eng Data. 1961;6:533–537. doi: 10.1021/je60011a015
  • Tanaka H, Gubbins KE. Structure and thermodynamic properties of water–methanol mixtures: role of the water–water interaction. J Chem Phys. 1992;97:2626–2634. doi: 10.1063/1.463051
  • Schrader J, Schilling M, Holtmann D, et al. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 2009;27:107–115. doi: 10.1016/j.tibtech.2008.10.009
  • Li X, Faghri A. Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sources. 2013;226:223–240. doi: 10.1016/j.jpowsour.2012.10.061
  • Olah GA. Beyond oil and gas: the methanol economy. Angew Chem Int Ed. 2005;44:2636–2639. doi: 10.1002/anie.200462121
  • Hogarth MP, Hards GA. Direct methanol fuel cells. Platin Met Rev. 1996;40:150–159.
  • Heinzel A, Barragán V. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources. 1999;84:70–74. doi: 10.1016/S0378-7753(99)00302-X
  • Aricò AS, Srinivasan S, Antonucci V. Dmfcs: from fundamental aspects to technology development. Fuel Cells. 2001;1:133–161. doi: 10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  • Mahmood A, Bano S, Kim SG, et al. Water–methanol separation characteristics of annealed SA/PVA complex membranes. J Memb Sci. 2012;415-416:360–367. doi: 10.1016/j.memsci.2012.05.020
  • Shah D, Kissick K, Ghorpade A, et al. Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results. J Memb Sci. 2000;179:185–205. doi: 10.1016/S0376-7388(00)00515-9
  • Winarto A, Takaiwa D, Yamamoto E, et al. Water–methanol separation with carbon nanotubes and electric fields. Nanoscale. 2015;7:12659–12665. doi: 10.1039/C5NR02182K
  • Widom B. Some topics in the theory of fluids. J Chem Phys. 1963;39:2808–2812. doi: 10.1063/1.1734110
  • Widom B. Potential-distribution theory and the statistical mechanics of fluids. J Phys Chem. 1982;86:869–872. doi: 10.1021/j100395a005
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego (CA): Academic Press; 2002.
  • Rahbari A, Poursaeidesfahani A, Torres-Knoop A, et al. Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. Mol Simul. 2018;44:405–414. doi: 10.1080/08927022.2017.1391385
  • Sindzingre P, Ciccotti G, Massobrio C, et al. Partial enthalpies and related quantities in mixtures from computer simulation. Chem Phys Lett. 1987;136:35–41. doi: 10.1016/0009-2614(87)87294-9
  • Poursaeidesfahani A, Torres-Knoop A, Dubbeldam D, et al. Direct free energy calculation in the continuous fractional component Gibbs ensemble. J Chem Theory Comput. 2016;12:1481–1490. doi: 10.1021/acs.jctc.5b01230
  • Rahbari A, Hens R, Nikolaidis IK, et al. Computation of partial molar properties using continuous fractional component Monte Carlo. Mol Phys. 2018;116:3331–3344. DOI:10.1080/00268976.2018.1451663.
  • Sindzingre P, Massobrio C, Ciccotti G, et al. Calculation of partial enthalpies of an argon-krypton mixture by NPT molecular dynamics. Chem Phys. 1989;129:213–224. doi: 10.1016/0301-0104(89)80007-2
  • Beutler TC, Mark AE, van Schaik RC, et al. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem phys Lett. 1994;222:529–539. doi: 10.1016/0009-2614(94)00397-1
  • Escobedo FA, de Pablo JJ. Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J Chem Phys. 1996;105:4391–4394. doi: 10.1063/1.472257
  • Shi W, Maginn EJ. continuous fractional component Monte Carlo: an adaptive biasing method for open system atomistic simulations. J Chem Theory Comput. 2007;3:1451–1463. doi: 10.1021/ct7000039
  • Shi W, Maginn EJ. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move. J Comput Chem. 2008;29:2520–2530. doi: 10.1002/jcc.20977
  • Kofke DA. Free energy methods in molecular simulation. Fluid Phase Equilib. 2005;228-229:41–48. doi: 10.1016/j.fluid.2004.09.017
  • Wilding NB, Müller M. Accurate measurements of the chemical potential of polymeric systems by Monte Carlo simulation. J Chem Phys. 1994;101:4324–4330. doi: 10.1063/1.467482
  • Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J Phys Chem Lett. 2014;5:3863–3871. doi: 10.1021/jz501780a
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-EW. J Chem Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B. 2001;105:3093–3104. doi: 10.1021/jp003882x
  • Gonzalez-Salgado D, Vega C. A new intermolecular potential for simulations of methanol: the OPLS/2016 model. J Chem Phys. 2016;145:034508. doi: 10.1063/1.4958320
  • Fanourgakis GS. An extension of Wolf's method for the treatment of electrostatic interactions: application to liquid water and aqueous solutions. J Phys Chem B. 2015;119:1974–1985. doi: 10.1021/jp510612w
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford University Press; 2017.
  • Cisneros GA, Karttunen M, Ren P, et al. Classical electrostatics for biomolecular simulations. Chem Rev. 2014;114:779–814. doi: 10.1021/cr300461d
  • Fukuda I, Nakamura H. Non-Ewald methods: theory and applications to molecular systems. Biophys Rev. 2012;4:161–170. doi: 10.1007/s12551-012-0089-4
  • Fennell CJ, Gezelter JD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys. 2006;124:234104. doi: 10.1063/1.2206581
  • Wolf D, Keblinski P, Phillpot SR, et al. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r1 summation. J Chem Phys. 1999;110:8254–8282. doi: 10.1063/1.478738
  • Wolf D. Reconstruction of nacl surfaces from a dipolar solution to the Madelung problem. Phys Rev Lett. 1992;68:3315–3318. doi: 10.1103/PhysRevLett.68.3315
  • Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253–287. doi: 10.1002/andp.19213690304
  • Hens R, Vlugt TJH. Molecular simulation of vapor–liquid equilibria using the Wolf method for electrostatic interactions. J Chem Eng Data. 2018;63(4):1096–1102. doi: 10.1021/acs.jced.7b00839
  • Vlugt TJH, García-Pérez E, Dubbeldam D, et al. Computing the heat of adsorption using molecular simulations: the effect of strong Coulombic interactions. J Chem Theory Comput. 2008;4:1107–1118. doi: 10.1021/ct700342k
  • Mendoza FN, López-Lemus J, Chapela GA, et al. The Wolf method applied to the liquid–vapor interface of water. J Chem Phys. 2008;129:024706. doi: 10.1063/1.2948951
  • McCann BW, Acevedo O. Pairwise alternatives to Ewald summation for calculating long-range electrostatics in ionic liquids. J Chem Theory Comput. 2013;9:944–950. doi: 10.1021/ct300961e
  • Toukmaji AY, Board Jr JA. Ewald summation techniques in perspective: a survey. Comput Phys Commun. 1996;95:73–92. doi: 10.1016/0010-4655(96)00016-1
  • Waibel C, Gross J. Modification of the Wolf method and evaluation for molecular simulation of vapor–liquid equilibria. J Chem Theory Comput. 2018;14:2198–2206. doi: 10.1021/acs.jctc.7b01190
  • Cerutti DS, Duke RE, Darden TA, et al. Staggered mesh Ewald: an extension of the smooth particle-mesh Ewald method adding great versatility. J Chem Theory Comput. 2009;5:2322–2338. doi: 10.1021/ct9001015
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log⁡(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092. doi: 10.1063/1.464397
  • Neelov A, Holm C. Interlaced P3M algorithm with analytical and ik-differentiation. J Chem Phys. 2010;132:234103. doi: 10.1063/1.3430521
  • Isele-Holder RE, Mitchell W, Hammond JR, et al. Reconsidering dispersion potentials: reduced cutoffs in mesh-based Ewald solvers can be faster than truncation. J Chem Theory Comput. 2013;9:5412–5420. doi: 10.1021/ct4004614
  • Saito M. Molecular dynamics simulations of proteins in solution: artifacts caused by the cutoff approximation. J Chem Phys. 1994;101:4055–4061. doi: 10.1063/1.468411
  • Steinbach PJ, Brooks BR. New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem. 1994;15:667–683. doi: 10.1002/jcc.540150702
  • Hansen JS, Schrøder TB, Dyre JC. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. J Phys Chem B. 2012;116:5738–5743. doi: 10.1021/jp300750g
  • Levitt M, Hirshberg M, Sharon R, et al. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun. 1995;91:215–231. doi: 10.1016/0010-4655(95)00049-L
  • Evjen HM. On the stability of certain heteropolar crystals. Phys Rev. 1932;39:675–687. doi: 10.1103/PhysRev.39.675
  • Pekka M, Lennart N. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J Comput Chem. 2002;23:1211–1219. doi: 10.1002/jcc.10117
  • Patra M, Karttunen M, Hyvnen M, et al. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J. 2003;84:3636–3645. doi: 10.1016/S0006-3495(03)75094-2
  • van der Spoel D, van Maaren PJ. The origin of layer structure artifacts in simulations of liquid water. J Chem Theory Comput. 2006;2:1–11. doi: 10.1021/ct0502256
  • van der Spoel D, van Maaren PJ, Berendsen HJC. A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys. 1998;108:10220–10230. doi: 10.1063/1.476482
  • Ghobadi AF, Taghikhani V, Elliott JR. Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT Monte Carlo simulation. J Phys Chem B. 2011;115:13599–13607. doi: 10.1021/jp2051239
  • Mahadevan TS, Garofalini SH. Dissociative water potential for molecular dynamics simulations. J Phys Chem B. 2007;111:8919–8927. doi: 10.1021/jp072530o
  • Carlos A, Alejandro GV. Monte Carlo simulations of primitive models for ionic systems using the Wolf method. Mol Phys. 2006;104:1475–1486. doi: 10.1080/00268970600551155
  • Poursaeidesfahani A, Hens R, Rahbari A, et al. Efficient application of continuous fractional component Monte Carlo in the reaction ensemble. J Chem Theory Comput. 2017;13:4452–4466. doi: 10.1021/acs.jctc.7b00092
  • Smith W, Forester T, Todorov I, et al. The dl poly 2 user manual. CCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England; 2001. 2.
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Amer Chem Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. doi: 10.1021/jp973084f
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25:1656–1676. doi: 10.1002/jcc.20090
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Amer Chem Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102:2569–2577. doi: 10.1021/jp972543+
  • Shi W, Maginn EJ. Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2n]. J Phys Chem B. 2008;112:2045–2055. doi: 10.1021/jp077223x
  • Shi W, Myers CR, Luebke DR, et al. Theoretical and experimental studies of CO2 and H2 separation using the 1-Ethyl-3-methylimidazolium acetate ([emim][CH3COO]) ionic liquid. J Phys Chem B. 2012;116:283–295. doi: 10.1021/jp205830d
  • Shi W, Sorescu DC. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf2n]) confined in carbon nanotubes. J Phys Chem B. 2010;114:15029–15041. doi: 10.1021/jp106500p
  • Balaji SP, Schnell SK, McGarrity ES, et al. A direct method for calculating thermodynamic factors for liquid mixtures using the permuted Widom test particle insertion method. Mol Phys. 2013;111:287–296. doi: 10.1080/00268976.2012.720386
  • Hempel S, Fischer J, Paschek D, et al. Activity coefficients of complex molecules by molecular simulation and Gibbs-Duhem integration. Soft Mater. 2012;10:26–41. doi: 10.1080/1539445X.2011.599698
  • Dubbeldam D, Calero S, Ellis DE, RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2015;42:81–101. doi: 10.1080/08927022.2015.1010082
  • Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of Monte Carlo codes. Mol Simul. 2013;39:1253–1292. doi: 10.1080/08927022.2013.819102
  • Goodwin RD. Methanol thermodynamic properties from 176 to 673 K at pressures to 700 bar. J Phys Chem Ref Data. 1987;16:799–892. doi: 10.1063/1.555786
  • Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. 5th ed. West Sussex: John Wiley & Sons; 2006.
  • Klimovich PV, Shirts MR, Mobley DL. Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des. 2015;29:397–411. doi: 10.1007/s10822-015-9840-9
  • Naden LN, Pham TT, Shirts MR. Linear basis function approach to efficient alchemical free energy calculations. 1. Removal of uncharged atomic sites. J Chem Theory Comput. 2014;10:1128–1149. doi: 10.1021/ct4009188
  • Naden LN, Shirts MR. Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with Coulombic interactions. J Chem Theory Comput. 2015;11:2536–2549. doi: 10.1021/ct501047e
  • Shirts MR, Pande VS. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys. 2005;122:134508.
  • Shirts MR, Pitera JW, Swope WC, et al. Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys. 2003;119:5740–5761. doi: 10.1063/1.1587119
  • Shirts MR, Mobley DL, Chodera JD. Chapter 4 alchemical free energy calculations: ready for prime time? In: Spellmeyer D, Wheeler R, editors. Annual reports in computational chemistry. Elsevier; 2007. p. 41–59.
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053. doi: 10.1103/PhysRevLett.86.2050
  • Poulain P, Calvo F, Antoine R, et al. Performances of Wang--Landau algorithms for continuous systems. Phys Rev E. 2006;73:056704. doi: 10.1103/PhysRevE.73.056704
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • McQuarrie DA, Simon JD. Physical chemistry: a molecular approach. 1st ed. Sausalito (CA): University Science Books; 1997.
  • Gmehling J, Kolbe B, Kleiber M, et al. Chemical thermodynamics for process simulation. 1st ed. Weinheim: Wiley-VCH Verlag & GmbH Co. KGaA.; 2012.
  • De Reuck K, Craven R. Methanol, international thermodynamic tables of the fluid state, vol. 12. London: IUPAC, Blackwell Scientific Publications; 1993.
  • Lemmon EW, Span R. Short fundamental equations of state for 20 industrial fluids. J Chem Eng Data. 2006;51:785–850. doi: 10.1021/je050186n
  • Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data. 1996;25:1509–1596. doi: 10.1063/1.555991
  • Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties – REFPROP. NIST Stand Ref Database. 2002;23:v7.
  • Dixit S, Crain J, Poon W, et al. Molecular segregation observed in aconcentrated alcohol–water solution. Nature. 2002;416:829. doi: 10.1038/416829a
  • Dixit S, Soper AK, Finney JL, et al. Water structure and solute association in dilute aqueous methanol. Europhys Lett. 2002;59:377. doi: 10.1209/epl/i2002-00205-7