89
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simulations of general anaesthetics in membranes at raised pressures: the search for mechanisms for pressure reversal of general anaesthetics

Pages 91-100 | Received 11 Dec 2017, Accepted 12 Dec 2018, Published online: 26 Dec 2018

References

  • Long CW. An account of the first use of sulphuric ether by inhalation as an anaesthetic in surgical operations. South Med Surgical J. 1849;5:705–713.
  • Meyer H. Welche Eigenschaft des Anaesthetica bedingt ihre narkotische Wirkung? Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie. 1899;42:109–118. doi: 10.1007/BF01834479
  • Overton E. Studien über die narkose zugleich ein beitrag zur allgemeinen pharmakologie. Jena: Gustav Fischer Verlag; 1901.
  • Johnson FH, Flagler EA. Hydrostatic pressure reversal of narcosis in tadpoles. Science. 1950;112:91–92. doi: 10.1126/science.112.2899.91-a
  • Johnson FH, Flagler EA. Activity of narcotized amphibian larvae under hydrostatic pressure. J Cell Comp Physiol. 1951;37:15–25. doi: 10.1002/jcp.1030370103
  • Lever MJ, Miller KW, Paton WDM, et al. Pressure reversal of anaesthesia. Nature. 1971;231:368–371. doi: 10.1038/231368a0
  • Miller KW, Paton WDM, Smith RA, et al. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973;9:131–143.
  • Halsey MJ, Wardley-Smith B. Pressure reversal of narcosis produced by anaesthetics, narcotics and tranquillisers. Nature. 1975;257:811–813. doi: 10.1038/257811a0
  • Youngson AF, MacDonald AG. Interaction between halothane and hydrostatic pressure. Br J Anaesth. 1970;42:801–802.
  • Simon SA, Parmentier JL, Bennett PB. Anesthetic antagonism of the effects of high hydrostatic pressure on locomotory activity of the brine shrimp Artemia. Comp Biochem Physiol. 1983;75A:193–199. doi: 10.1016/0300-9629(83)90069-5
  • Dundas CR. Alphaxalone/alphadolone in diving-chamber anesthesia. Lancet. 1979;313:378. doi: 10.1016/S0140-6736(79)92913-1
  • Yamamoto E, Akimoto T, Shimizu H, et al. Diffusive nature of xenon anesthetic changes properties of a lipid bilayer: molecular dynamics simulations. J Phys Chem B. 2012;116:8989–8995. doi: 10.1021/jp303330c
  • Fábián B, Darvas M, Picaud S, et al. The effect of anaesthetics on the properties of a lipid membrane in the biologically relevant phase: a computer simulation study. Phys Chem Chem Phys. 2015;17:14750–14760. doi: 10.1039/C5CP00851D
  • Trudell JR, Hubbell WL, Cohen EN. The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta Biomembranes. 1973;291:321–327. doi: 10.1016/0005-2736(73)90485-9
  • Trudell JR, Hubbell WL, Cohen EN. Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta Biomembranes. 1973;291:328–334. doi: 10.1016/S0005-2736(73)80001-X
  • Chau PL. New insights into the molecular mechanisms of general anaesthetics. Br J Pharmacol. 2010;161:288–307. doi: 10.1111/j.1476-5381.2010.00891.x
  • Jenkins A, Greenblatt EP, Faulkner HJ, et al. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J. Neurosci. 2001;21:RC136. doi: 10.1523/JNEUROSCI.21-06-j0002.2001
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. doi: 10.1021/jp973084f
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Scharf D, Laasonen K. Structure, effective pair potential and properties of halothane. Chem Phys Lett. 1996;258:276–282. doi: 10.1016/0009-2614(96)00652-5
  • Matubayasi N, Nakahara M. Theory of solutions in the energetic representation. I. Formulation. J Chem Phys. 2000;113:6070–6081. doi: 10.1063/1.1309013
  • Matubayasi N, Nakahara M. Theory of solutions in the energy representation. II. Functional for the chemical potential. J Chem Phys. 2002;117:3605–3616. 118, 2446 (2003) (erratum). doi: 10.1063/1.1495850
  • Matubayasi N, Nakahara M. Theory of solutions in the energy representation. III. Treatment of the molecular flexibility. J Chem Phys. 2003;119:9686–9702. doi: 10.1063/1.1613938
  • Matubayasi N, Shinoda W, Nakahara M. Free-energy analysis of the molecular binding into lipid membrane with the method of energy representation. J Chem Phys. 2008;128:195107 (13 pages). doi: 10.1063/1.2919117
  • Chau PL, Tu KM, Liang KK, et al. Free-energy change of inserting halothane into different depths of a hydrated DMPC bilayer. Chem Phys Lett. 2008;462:112–115. doi: 10.1016/j.cplett.2008.07.037
  • Forester TR, Smith W. DL_POLY 2.0 – a general-purpose parallel molecular dynamics package. J Mol Graph. 1996;14:136–141. doi: 10.1016/S0263-7855(96)00043-4
  • Melchionna S, Ciccotti G, Holian BL. Hoover NPT dynamics for systems varying in size and shape. Mol Phys. 1993;78:533–544. doi: 10.1080/00268979300100371
  • Chau PL, Tu KM, Liang KK, et al. The effect of pressure on halothane binding to hydrated DMPC bilayers. Mol Phys. 2012;110:1461–1467. doi: 10.1080/00268976.2012.659682
  • Chau PL, Hoang P, Picaud S, et al. A possible mechanism for pressure reversal of general anaesthetics from molecular simulations. Chem Phys Lett. 2007;438:294–297. doi: 10.1016/j.cplett.2007.02.071
  • Chau PL, Jedlovszky P, Hoang P, et al. Pressure reversal of general anaesthetics: a possible mechanism from molecular dynamics simulations. J Mol Liq. 2009;147:128–134. doi: 10.1016/j.molliq.2008.09.005
  • Tada K, Goto M, Tamai N, et al. Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain. Ann N Y Acad Sci. 2010;1189:77–85. doi: 10.1111/j.1749-6632.2009.05203.x
  • Feller SE, MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B. 2000;104:7510–7515. doi: 10.1021/jp0007843
  • Zhao W, Róg T, Gurtovenko AA, et al. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J. 2007;92:1114–1124. doi: 10.1529/biophysj.106.086272
  • Peck TE, Hill SA, Williams M. Pharmacology for anaesthesia and intensive care. 2nd ed. Cambridge: Cambridge University Press; 2003.
  • Tu KM, Matubayasi N, Liang KK, et al. A possible molecular mechanism for the pressure reversal of general anaesthetics: aggregation of halothane in POPC bilayers at high pressure. Chem Phys Lett. 2012;543:148–154. doi: 10.1016/j.cplett.2012.06.044
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289
  • Henin J, Brannigan G, Dailey WP, et al. An atomistic model for simulations of the general anesthetic isoflurane. J Phys Chem B. 2010;114:604–612. doi: 10.1021/jp9088035
  • Wieteska JR, Welche PRL, Tu KM, et al. Isoflurane does not aggregate inside POPC bilayers at high pressure: implications for pressure reversal of general anaesthesia. Chem Phys Lett. 2015;638:116–121. doi: 10.1016/j.cplett.2015.07.065
  • Brauer RW, Hogan PM, Hugon M, et al. Patterns of interaction of effects of light metabolically insert gases with those of hydrostatic pressure as such – a review. Undersea Biomed Res. 1982;9:353–396.
  • McCarthy NLC, Brooks NJ, Tyler AII, et al. A combined X-ray scattering and simulation study of halothane in membranes at raised pressures. Chem Phys Lett. 2017;671:21–27. doi: 10.1016/j.cplett.2016.12.041
  • Harris B, Moody E, Skolnick P. Isoflurane anesthesia is stereoselective. Eur J Pharmacol. 1992;217:215–216. doi: 10.1016/0014-2999(92)90875-5
  • Lysko GS, Robinson JL, Casto R, et al. The stereospecific effects of isoflurane isomers in vivo. Eur J Pharmacol. 1994;263:25–29. doi: 10.1016/0014-2999(94)90519-3
  • Dickinson R, Franks NP, Lieb WR. Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys J. 1994;66:2019–2023. doi: 10.1016/S0006-3495(94)80994-4
  • Tomlin SL, Jenkins A, Lieb WR, et al. Stereoselective effects of etomidate optical isomers on γ-aminobutyric acid type A receptors and animals. Anesthesiology. 1998;88:708–717. doi: 10.1097/00000542-199803000-00022
  • Ugarte SD, Homanics GE, Firestone LL, et al. Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the β3 subunit of the GABAA receptors. Neuroscience. 2000;95:795–806. doi: 10.1016/S0306-4522(99)00481-9
  • Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci. 2002;5:979–984. doi: 10.1038/nn913
  • Sukhotinsky I, Zalkind V, Lu J, et al. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA-active anesthetics. Eur J Neurosci. 2007;25:1417–1436. doi: 10.1111/j.1460-9568.2007.05399.x
  • Minert A, Devor M. Brainstem node for loss of consciousness due to GABAA receptor-active anesthetics. Exp Neurol. 2016;275:38–45. doi: 10.1016/j.expneurol.2015.10.001
  • Devor M, Zalkind V, Fishman Y, et al. Model of anaesthetic induction by unilateral intracerebral microinjection of GABAergic agonists. Eur J Neurosci. 2016;43:846–858. doi: 10.1111/ejn.13186
  • Halsey MJ. Effects of high pressure on the central nervous system. Physiol Rev. 1982;62:1341–1377. doi: 10.1152/physrev.1982.62.4.1341
  • Brauer RW. Hydrostatic pressure effects on the central nervous system: perspectives and outlook. Philos Trans R Soc London. 1984;B304:17–30. doi: 10.1098/rstb.1984.0005
  • Jain KK. High-pressure neurological syndrome (HPNS). Acta Neurol Scand. 1994;90:45–50. doi: 10.1111/j.1600-0404.1994.tb02678.x
  • Pearce PC, Doré CJ, Halsey MJ, et al. The effects of MK801 on the high pressure neurological syndrome in the baboon (Papio anubis). Neuropharmacology. 1990;29:931–941. doi: 10.1016/0028-3908(90)90144-G
  • Pearce PC, Halsey MJ, Maclean CJ, et al. The effects of the competitive NMDA receptor antagonist CPP on the high pressure neurological syndrome in a primate model. Neuropharmacology. 1991;30:787–796. doi: 10.1016/0028-3908(91)90187-G
  • Pearce PC, Maclean CJ, Shergill HK, et al. Protection from high pressure induced hyperexcitability by the AMPA/kainate receptor antagonists GYKI 52466 and LY 293558. Neuropharmacology. 1994;33:605–612. doi: 10.1016/0028-3908(94)90164-3
  • Rostain JC, Wardley-Smith B, Forini C, et al. Gamma-aminobutyric acid and the high pressure neurological syndrome. Neuropharmacology. 1986;25:545–554. doi: 10.1016/0028-3908(86)90182-6
  • Kriem B, Cagniard B, Bouquet C, et al. Modulation by GABA transmission in the substantia nigra compacta and reticulata of locomotor activity in rats exposed to high pressure. NeuroReport. 1998;9:1343–1347. doi: 10.1097/00001756-199805110-00017
  • Pearce PC, Halsey MJ, Maclean CJ, et al. Interactions of the β-carboline abecarnil with the high pressure neurological syndrome in a primate model. Psychopharmacology. 1992;109:163–171. doi: 10.1007/BF02245495
  • Bichard AR, Little HJ. Drugs that increase γ-aminobutyric acid transmission protect against the high pressure neurological syndrome. Br J Pharmacol. 1982;76:447–452. doi: 10.1111/j.1476-5381.1982.tb09238.x
  • Kriem B, Rostain JC, Abraini JH. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats. Brain Res. 1998;796:143–149. doi: 10.1016/S0006-8993(98)00338-2
  • Angel A, Halsey MJ, Wardley-Smith B. Interactions of γ-aminobutyric acid and noradrenaline in the high pressure neurological syndrome. Br J Pharmacol. 1983;79:725–729. doi: 10.1111/j.1476-5381.1983.tb10010.x
  • Angel A, Halsey MJ, Little H, et al. Specific effects of drugs at pressure: animal investigations. Philos Trans R Soc London. 1984;B304:85–94. doi: 10.1098/rstb.1984.0010
  • Darbin O, Risso JJ, Rostain JC. The full expression of locomotor and motor hyperactivities induced by pressure requires both striatal dopaminergic and N-methyl-D-asparate receptor activities in the rat. Neurosci Lett. 1999;267:149–152. doi: 10.1016/S0304-3940(99)00147-0
  • Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br J Pharmacol. 1991;104:619–628. doi: 10.1111/j.1476-5381.1991.tb12479.x
  • Millan MH, Wardley-Smith B, Halsey MJ, et al. Brain nuclei and neurotransmitters involved in the regulation of the high pressure neurological syndrome in the rat. Neuropharmacology. 1991;30:1351–1355. doi: 10.1016/0028-3908(91)90033-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.