2,094
Views
4
CrossRef citations to date
0
Altmetric
Articles

A neural network interface for DL_POLY and its application to liquid water

, , &
Pages 113-118 | Received 25 Jan 2018, Accepted 12 Dec 2018, Published online: 27 Dec 2018

References

  • Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 1977;99:8127–8134. doi: 10.1021/ja00467a001
  • Rahman A, Stillinger FH, Lemberg HL. Study of a central force model for liquid water by molecular dynamics. J Chem Phys. 1975;63:5223–5230. doi: 10.1063/1.431307
  • Schlegel HB, Sonnenberg JL. Empirical valence-bond models for reactive potential energy surfaces using distributed gaussians. J Chem Theory Comput. 2006;2:905–911. doi: 10.1021/ct600084p
  • Masia M, Probst M, Rey R. On the performance of molecular polarization methods. I. water and carbon tetrachloride close to a point charge. J Chem Phys. 2004;121:7362–7378. doi: 10.1063/1.1791637
  • Straatsma TP, McCammon JA. Free energy thermodynamic integrations in molecular dynamics simulations using a noniterative method to include electronic polarization. Chem Phys Lett. 1990;167:252–254. doi: 10.1016/0009-2614(90)85014-4
  • Baker CM. Polarizable force fields for molecular dynamics simulations of biomolecules. WIREs Comput Mol Sci. 2015;5:241–254. doi: 10.1002/wcms.1215
  • Sutton AP, Chen J. Long-range finnis–sinclair potentials. Philos Mag Lett. 1990;61:139–146. doi: 10.1080/09500839008206493
  • Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals. Philos Mag A. 1984;50:45–55. doi: 10.1080/01418618408244210
  • Abell G. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B. 1985;31:6184–6196. doi: 10.1103/PhysRevB.31.6184
  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37:6991–7000. doi: 10.1103/PhysRevB.37.6991
  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409. doi: 10.1021/jp004368u
  • Goringe CM, Bowler DR, Hernández E. Tight-binding modelling of materials. Rep Prog Phys. 1997;60:1447–1512. doi: 10.1088/0034-4885/60/12/001
  • Gassner H, Probst M, Lauenstein A, et al. Representation of intermolecular potential functions by neural networks. J Phys Chem A. 1998;102:4596–4605. doi: 10.1021/jp972209d
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401. doi: 10.1103/PhysRevLett.98.146401
  • Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B. 2013;87:184115. doi: 10.1103/PhysRevB.87.184115
  • Shao K, Chen J, Zhao Z, et al. Communication: fitting potential energy surfaces with fundamental invariant neural network. J Chem Phys. 2016;145:071101. doi: 10.1063/1.4961454
  • Behler J. Representing potential energy surfaces by high-dimensional neural network potentials. J Phys: Condens Matter. 2014;26:183001.
  • Artrith N, Urban A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comp Mat Sci. 2016;114:135–150. doi: 10.1016/j.commatsci.2015.11.047
  • Artrith N, Urban A, Ceder G. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B. 2017;96:014112. doi: 10.1103/PhysRevB.96.014112
  • Kaiser A, Ritter M, Nazmutdinov R, et al. Hydrogen bonding and dielectric spectra of ethylene glycol–water mixtures from molecular dynamics simulations. J Phys Chem B. 2016;120:10515–10523. doi: 10.1021/acs.jpcb.6b05236
  • Morawietz T, Sharma V, Behler J. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges. J Chem Phys. 2012;136:064103. doi: 10.1063/1.3682557
  • Morawietz T, Behler J. A density-functional theory-based neural network potential for water clusters including van der Waals corrections. J Phys Chem A. 2013;117:7356–7366. doi: 10.1021/jp401225b
  • Morawietz T, Behler J. A full-dimensional neural network potential-energy surface for water clusters up to the hexamer. Zeitschrift für Physikalische Chemie. 2013;227:1559–1581. doi: 10.1524/zpch.2013.0384
  • Kondati Natarajan S, Behler J. Self-Diffusion of surface defects at copper–water interfaces. J Phys Chem C. 2017;121:4368–4383. doi: 10.1021/acs.jpcc.6b12657
  • Natarajan SK, Behler J. Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Phys Chem Chem Phys. 2016;18:28704–28725. doi: 10.1039/C6CP05711J
  • Quaranta V, Hellström M, Behler J. Proton-transfer mechanisms at the water–ZnO interface: The role of presolvation. J Phys Chem Lett. 2017;8:1476–1483. doi: 10.1021/acs.jpclett.7b00358
  • Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials. Nano Lett. 2014;14:2670–2676. doi: 10.1021/nl5005674
  • Hellström M, Behler J. Concentration-dependent proton transfer mechanisms in aqueous NaOH solutions: from acceptor-driven to donor-driven and back. J Phys Chem Lett. 2016;7:3302–3306. doi: 10.1021/acs.jpclett.6b01448
  • Hellström M, Behler J. Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. Phys Chem Chem Phys. 2017;19:82–96. doi: 10.1039/C6CP06547C
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Lourderaj U, Sun R, Kohale SC, et al. The VENUS/NWChem software package. Tight coupling between chemical dynamics simulations and electronic structure theory. Comput Phys Commun. 2014;185:1074–1080. doi: 10.1016/j.cpc.2013.11.011
  • Behler J. Constructing high-dimensional neural network potentials: A tutorial review. Int J Quantum Chem. 2015;115:1032–1050. doi: 10.1002/qua.24890
  • Byrd R, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing. 1995;16:1190–1208. doi: 10.1137/0916069
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224
  • Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268. doi: 10.1080/00268978400101201
  • Kaiser A, Ismailova O, Koskela A, et al. Ethylene glycol revisited: molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network. J Mol Liqu. 2014;189:20–29. doi: 10.1016/j.molliq.2013.05.033
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–9960. doi: 10.1021/jp003020w