92
Views
2
CrossRef citations to date
0
Altmetric
Articles

Is there a way to protect human immune cells against nanocytotoxicity?

&
Pages 585-594 | Received 03 Oct 2018, Accepted 31 Dec 2018, Published online: 15 Jan 2019

References

  • Mei N, Zhang Y, Chen Y, et al. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen. 2012;53(6):409–419. doi: 10.1002/em.21698
  • McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116–127. doi: 10.1016/j.jfda.2014.01.010
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44:2169–2175. doi: 10.1021/es9035557
  • Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42(23):8959–8964. doi: 10.1021/es801785m
  • Kittler S, Greulich C, Köller M, et al. Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkstofftech. 2009;40:258–264. doi: 10.1002/mawe.200800437
  • Kvitek L, Vanickova M, Panacek A, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C. 2009;113:4296–4300. doi: 10.1021/jp808645e
  • Miao AJ, Schwehr KA, Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut. 2009;157:3034–3041. doi: 10.1016/j.envpol.2009.05.047
  • Xiu ZM, Ma J, Alvarez PJ. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol. 2011;45(20):9003–9008. doi: 10.1021/es201918f
  • AshaRani PV, Sethu S, Lim HK, et al. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 2012;3(1):1–14. doi: 10.1186/2041-9414-3-2
  • Barbasz A, Oćwieja M, Barbasz J. Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Appl Biochem Biotechnol. 2015;176(3):817–834. doi: 10.1007/s12010-015-1613-3
  • Barbasz A, Oćwieja M. Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60. J Exp Nanosci. 2016;11(7):564–580. doi: 10.1080/17458080.2015.1096024
  • Barbasz A, Oćwieja M, Walas S. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells. Toxicol Mech Methods. 2017;27(1):58–71. doi: 10.1080/15376516.2016.1251520
  • Schins RP, Knaapen AM. Genotoxicity of poorly soluble particles. Inhal Toxicol. 2007;19(Supp. 1):189–198. doi: 10.1080/08958370701496202
  • Yang X, Gondikas AP, Marinakos SM, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol. 2012;46:1119–1127. doi: 10.1021/es202417t
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619. doi: 10.1021/jp712087m
  • El Badawy AM, Silva RG, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–287. doi: 10.1021/es1034188
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi: 10.1128/AEM.02218-06
  • Oćwieja M, Adamczyk Z. Monolayers of silver nanoparticles obtained by chemical reduction methods. Surf Innov. 2014;2:160–172. doi: 10.1680/si.13.00042
  • Oćwieja M, Adamczyk Z, Morga M, et al. High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Colloid Interface Sci. 2011;364:39–48. doi: 10.1016/j.jcis.2011.07.059
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199–1200. doi: 10.1038/1811199a0
  • Kujda M, Oćwieja M, Adamczyk Z, et al. Charge stabilized silver nanoparticles applied as antibacterial agents. J Nanosci Nanotechnol. 2015;15:3574–3583. doi: 10.1166/jnn.2015.9727
  • Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci. 1996;93(8):3704–3709. doi: 10.1073/pnas.93.8.3704
  • Levine M, Wang Y, Padayatty SJ, et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci. 2001;98(17):9842–9846. doi: 10.1073/pnas.171318198
  • Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533–537. doi: 10.7326/0003-4819-140-7-200404060-00010
  • Rose RC. Transport of ascorbic acid and other water-soluble vitamins. Biochim Biophys Acta. 1988;947:335–366. doi: 10.1016/0304-4157(88)90014-7
  • Guaiquil VH, Farber CM, Golde DW, et al. Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J Biol Chem. 1997;272(15):9915–9921. doi: 10.1074/jbc.272.15.9915
  • Van Duijn MM, Van der Zee J, Van Steveninck J, et al. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem. 1998;273(22):13415–13420. doi: 10.1074/jbc.273.22.13415
  • May JM, Mendiratta S, Qu ZC, et al. Vitamin C recycling and function in human monocytic U-937 cells. Free Radic Biol Med. 1999;26(11):1513–1523. doi: 10.1016/S0891-5849(99)00017-9
  • Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci. 2005;102(38):13604–13609. doi: 10.1073/pnas.0506390102
  • Salucci M, Stivala LA, Maiani G, et al. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer. 2002;86:1645–1651. doi: 10.1038/sj.bjc.6600295
  • Zhang W, Hashimoto K, Yu GY, et al. Decline of superoxide dismutase activity during antioxidant-induced apoptosis in HL-60 cells. Anticancer Res. 2002;22:219–224.
  • Mayer M, Noble M. N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc Natl Acad Sci. 1994;91(16):7496–7500. doi: 10.1073/pnas.91.16.7496
  • Walker MK, Vergely C, Lecour S, et al. Vitamin E analogues reduce the incidence of ventricular fibrillations and scavenge free radicals. Fundam Clin Pharmacol. 1998;12:164–172. doi: 10.1111/j.1472-8206.1998.tb00937.x
  • Wu TW, Hashimoto N, Wu J, et al. The cytoprotective effect of trolox demonstrated with three types of human cells. Biochem Cell Biol. 1990;68(10):1189–1194. doi: 10.1139/o90-176
  • Zeng L-H, Wu J, Carey D, et al. Trolox and ascorbate: are they synergistic in protecting liver cells in vitro and in vivo? Biochem Cell Biol. 1991;69:198–201. doi: 10.1139/o91-029
  • Davies MJ, Forni LG, Willson RL. Vitamin E analogue trolox CEsr and pulse-radiolysis studies of free-radical reactions. Biochem J. 1988;255(2):513–522.
  • Ouédraogo GD, Redmond RW. Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization. Photochem Photobiol. 2003;77:192–203. doi: 10.1562/0031-8655(2003)0770192SROSET2.0.CO2
  • Xiao T, Choudhary S, Zhang W, et al. Possible involvement of oxidative stress in cisplatin-induced apoptosis in LLC-PK1 cells. J Toxicol Environ Health A. 2003;66:469–479. doi: 10.1080/15287390306449
  • Li Y, Qin T, Ingle T, et al. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. 2017;91(1):509–519. doi: 10.1007/s00204-016-1730-y
  • Park J, Lim DH, Lim HJ, et al. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun. 2011;47:4382–4384. doi: 10.1039/c1cc10357a
  • Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810–9817. doi: 10.1016/j.biomaterials.2011.08.085
  • Akhtar S, Paredes-Sabja D, Sarker MR. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth. Food Microbiol. 2008;25:802–808. doi: 10.1016/j.fm.2008.04.006
  • Lee RM, Hartman PA, Olson DG, et al. Bactericidal and bacteriolytic effects of selected food-grade phosphates, using Staphylococcus aureus as a model system. J Food Prot. 1994;8:276–283. doi: 10.4315/0362-028X-57.4.276
  • Obritsch JA, Ryu D, Lampila LE, et al. Antibacterial effects of long-chain polyphosphates on selected spoilage and pathogenic bacteria. J Food Prot. 2008;71:1401–1405. doi: 10.4315/0362-028X-71.7.1401
  • Barclay LRC, Locke SJ, MacNeil JM. Autoxidation in micelles. Synergism of vitamin C with lipid-soluble vitamin E and water-soluble trolox. Can J Chem. 1985;63(2):366–374. doi: 10.1139/v85-062
  • Rudolphi-Skórska E, Filek M, Zembala M. α-Tocopherol/gallic acid cooperation in the protection of galactolipids against ozone-induced oxidation. J Membr Biol. 2016;249(1–2):87–95. doi: 10.1007/s00232-015-9851-4
  • Biswas P, Delfanti F, Bernasconi S, et al. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood. 1998;91(1):258–265.
  • Chang YJ, Hsu SL, Liu YT, et al. Gallic acid induces necroptosis via TNF-α signaling pathway in activated hepatic stellate cells. PLoS One. 2015;10(3):e0120713. doi: 10.1371/journal.pone.0120713
  • Kuppan G, Balasubramanyam J, Monickaraj F, et al. Transcriptional regulation of cytokines and oxidative stress by gallic acid in human THP-1 monocytes. Cytokine. 2010;49(2):229–234. doi: 10.1016/j.cyto.2009.11.003
  • Kim SH, Jun CD, Suk K, et al. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol Sci. 2006;91(1):123–131. doi: 10.1093/toxsci/kfj063
  • Ahamed M, Posgai R, Gorey TJ, et al. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010;242(3):263–269. doi: 10.1016/j.taap.2009.10.016
  • Arora S, Jain J, Rajwade JM, et al. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett. 2008;179(2):93–100. doi: 10.1016/j.toxlet.2008.04.009
  • Asha Rani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290. doi: 10.1021/nn800596w
  • Foldbjerg R, Olesen P, Hougaard M, et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190(2):156–162. doi: 10.1016/j.toxlet.2009.07.009
  • Miura N, Shinohara Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun. 2009;390(3):733–737. doi: 10.1016/j.bbrc.2009.10.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.