165
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural and electronic properties of chemically modified fullerenes

&
Pages 623-635 | Received 18 Oct 2018, Accepted 02 Jan 2019, Published online: 07 Feb 2019

References

  • Borchert H, Borchert Y, Kaichev VV, et al. Nanostructured, Gd-doped ceria promoted by Pt or Pd: investigation of the electronic and surface structures and relations to chemical properties. J Phys Chem B. 2005;109:20077. doi: 10.1021/jp051525m
  • Peppas NA, Hilt JZ, Khademhosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345. doi: 10.1002/adma.200501612
  • Li J, Papadopoulos C, Xu JM, et al. Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett. 1999;75:367. doi: 10.1063/1.124377
  • Yang C. Magnetic molecules made of nitrogen or boron-doped fullerenes. Appl Phys Lett. 2008;92:033103.
  • Veprek S, Argon AS. Mechanical properties of superhard nanocomposites. Surf Coat Technol. 2001;146:175. doi: 10.1016/S0257-8972(01)01467-0
  • Rowell MW, Topinka MA, McGehee MD. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett. 2006;88:233506. doi: 10.1063/1.2209887
  • Teker K, Wickstrom E, Panchapakesan B. Biomolecular tuning of electronic transport properties of carbon nanotubes via antibody functionalization. IEEE Sensors J. 2006;6:1422. doi: 10.1109/JSEN.2006.884564
  • Veprek S, Jilek M. Super- and ultrahard nanacomposite coatings: generic concept for their preparation, properties and industrial applications. Vacuum. 2002;67:443. doi: 10.1016/S0042-207X(02)00229-4
  • Kar S, Chaudhuri S. Cadmium sulfide one-dimensional nanostructures: synthesis, characterization and application. Synth React Inorg Met-Org Nano-Met Chem. 2006;36:289. doi: 10.1080/15533170600596055
  • Mahmood M, Villagarcia H, Dervishi E, et al. Role of carbonaceous nanomaterials in stimulating osteogenesis in mammalian bone cells. J Mater Chem B. 2013;1:3220. doi: 10.1039/c3tb20248h
  • Bian S, Ma Z, Song W. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J Phys Chem C. 2009;113:8668. doi: 10.1021/jp810630k
  • Saha D, Deng S. Hydrogen adsorption on Pd- and Ru-doped C60 fullerene at an ambient temperature. Langmuir. 2011;27:6780. doi: 10.1021/la200091s
  • Gao F, Zhao G, Yang S, et al. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells. J Am Chem Soc. 2013;135:3315. doi: 10.1021/ja309042m
  • Shalabi AS, El Mahdy AM, Soliman KA, et al. Theoretical characterisation of irreversible and reversible hydrogen storage reactions on Ni-doped C60 fullerene. Mol Phys. 2014;112:3057. doi: 10.1080/00268976.2014.928754
  • De Silva SW, Du A, Senadeera W, et al. Neutral and charged boron-doped fullerenes for CO2 adsorption. Beilstein J Nanotechnol. 2014;5:413. doi: 10.3762/bjnano.5.49
  • Rad AS, Aghael SM, Aali E, et al. Study on the electronic structure of Cr- and Ni-doped fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diam Relat Mater. 2017;77:116. doi: 10.1016/j.diamond.2017.06.013
  • Rad AS, Aghael SM, Aali E, et al. Application of chromium-doped fullerene as a carrier for thymine and uracil nucleotides: comprehensive density functional theory calculations. Appl Organomet Chem. 2018;32:4070. doi: 10.1002/aoc.4070
  • Rad AS, Ayub K. Nonlinear optical and electronic properties of Cr-, Ni-, and Ti- substituted C 20 fullerenes: a quantum-chemical study. Mater Res Bull. 2018;97:399. doi: 10.1016/j.materresbull.2017.09.036
  • Rad AS, Ayub K. Substitutional doping of zirconium-, molybdenum-, ruthenium-, and palladium: an effective method to improve nonlinear optical and electronic property of C20 fullerene. Comput Theor Chem. 2017;1121:68. doi: 10.1016/j.comptc.2017.10.015
  • Haddon RC. Electronic structure, conductivity and superconductivity of alkali metal doped (C60). Acc Chem Res. 1992;25:127. doi: 10.1021/ar00015a005
  • Prato M. [60]Fullerene chemistry for materials science applications. J Mater Chem. 1997;7:1097. doi: 10.1039/a700080d
  • Pradeep T, Vijayakrishnan V, Santra AK, et al. Interaction of nitrogen with fullerenes: nitrogen derivatives of C60 and C70. J Phys Chem. 1991;95:10564. doi: 10.1021/j100179a015
  • Billas IML, Massobrio C, Boero M, et al. First principles calculations of Si doped fullerenes: structural and electronic localization properties in C59Si and C58Si2. J Chem Phys. 1999;111:6787. doi: 10.1063/1.480018
  • Changgeng D, Jinlong Y, Xiangyuan C, et al. Geometric and electronic structures of metal-substituted fullerenes C59M (M=Fe, Co, Ni, and Rh). J Chem Phys. 1999;111:8481. doi: 10.1063/1.480188
  • Sulman E, Yanov I, Leszczynski J. An active site model and the catalytic activity mechanism of the new fullerene-based catalyst - (ν2-C60)Pd(PPh3)2. Full Sci Technol. 1999;7:467. doi: 10.1080/10641229909350295
  • Xie R, Bryant GW, Zhao J, et al. Tailorable acceptor C60-nBn and donor C60-mNm pairs for molecular electronics. Phys Rev Lett. 2003;90:206602. doi: 10.1103/PhysRevLett.90.206602
  • Kim K, Hauke F, Hirsch A, et al. Synthesis of the C59N+ carbocation. A monomeric azafullerene isoelectronic to C60. J Am Chem Soc. 2003;125:4024. doi: 10.1021/ja034014r
  • Zou YJ, Zhang XW, Li YL, et al. Bonding character of the boron-doped C60 films prepared by radio frequency plasma assisted vapor deposition. J Mater Sci. 2002;37:1043. doi: 10.1023/A:1014368418784
  • Azevedo S, De Paiva R. Structural stability and electronic properties of carbon-boron nitride compounds. Europhys Lett. 2006;75:126. doi: 10.1209/epl/i2006-10066-0
  • Chen F, Singh D, Jansen SA. Electronic effects in metal complexation of fullerenes C60, C59N, and C59B. J Phys Chem. 1993;97:10958. doi: 10.1021/j100144a011
  • Alemany MMG, Dieguez O, Rey C, et al. A density-functional study of the structures and electronic properties of C59Ni and C60Ni clusters. J Chem Phys. 2001;114:9371. doi: 10.1063/1.1353583
  • Branz W, Billas IML, Malinowski N, et al. Cage substitution in metal–fullerene clusters. J Chem Phys. 1998;109:3425. doi: 10.1063/1.477410
  • Guo J, Liu Z, Liu S, et al. High-capacity hydrogen storage medium: Ti doped fullerene. Appl Phys Lett. 2011;98:023107.
  • Padole MC, Deshpande PA. Tailoring surface adsorption and reactivity of fullerene-based compounds: a theoretical probe into C2–gas–fullerene surface interactions. J Phys Chem C. 2016;120:12654. doi: 10.1021/acs.jpcc.6b03747
  • Sinfelt JH, Yates DJC. Catalytic hydrogenolysis of ethane over the noble metals of group VIII. J Catal. 1967;8:82. doi: 10.1016/0021-9517(67)90284-9
  • Yang B, Burch R, Hardacre C, et al. Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. ACS Catal. 2012;2:1027. doi: 10.1021/cs2006789
  • Padole MC, Deshpande PA. Halobenzene activation by heterofullerenes: computational investigation of oxidative addition activity. J Phys Org Chem. 2017;30. doi:10.1002/poc.3628
  • Padole MC, Deshpande PA. Mechanistic insights into C–C cross coupling activities of Pd/Ni-doped heterofullerenes. J Phys Org Chem. 2017. doi:10.1002/poc.3696
  • Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev. 1995;95:2457. doi: 10.1021/cr00039a007
  • Balanta A, Godard C, Claver C. Pd nanoparticles for C–C coupling reactions. Chem Soc Rev. 2011;40:4973. doi: 10.1039/c1cs15195a
  • Percec V, Bae J, Hill H. Aryl mesylates in metal catalyzed homocoupling and cross-coupling reactions. 2. Suzuki-type nickel-catalyzed cross-coupling of aryl arenesulfonates and aryl mesylates with arylboronic acids. J Org Chem. 1995;60:1060. doi: 10.1021/jo00109a044
  • Saito S, Oh-tani S, Miyaura N. Synthesis of Biaryls via a Nickel(0)-catalyzed cross-coupling reaction of chloroarenes with arylboronic acids. J Org Chem. 1997;62:8024. doi: 10.1021/jo9707848
  • Xu Z, Nakane T, Shinohara H. Production and isolation of Ca@C82 (I-IV) and Ca@C84 (I,II) metallofullerenes. J Am Chem Soc. 1996;118:11309. doi: 10.1021/ja962562h
  • Shinohara H, Tagmatarchis N. Endohedral metallofullerenes, fullerenes with metal inside. 1st ed. West Sussex: John Wiley and Sons Ltd.; 2015.
  • Nava MG, Setayesh S, Rameau A, et al. Fullerene-functionalized polyesters: synthesis, characterization and incorporation in photovoltaic cells. New J Chem. 2002;26:1584. doi: 10.1039/B205493K
  • Durka M, Buffet K, Lehl J, et al. The functional valency of dodecamannosylated fullerenes with Escherichia coli FimH–towards novel bacterial antiadhesives. Chem Commun. 2011;47:1321. doi: 10.1039/C0CC04468G
  • Figueira-Duarte TM, Clifford J, Amendola V, et al. Synthesis and excited state properties of a [60]fullerene derivative bearing a star-shaped multi-photon absorption chromophore. Chem Commun. 2006;19:2054. doi: 10.1039/B601987K
  • Kong Q, Zhuang J, Li X, et al. Formation of metallofullerenes by laser ablation of externally doped fullerenes C60Mx (M=Sm, Pt and Ni). Appl Phys A. 2002;75:367. doi: 10.1007/s003390101041
  • Zou YJ, Zhang XW, Li YL, et al. Bonding character of the boron-doped C60 films prepared by radio frequency plasma assisted vapor deposition. J Mater Sci. 2002;37:1043. doi: 10.1023/A:1014368418784
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02. Wallingford (CT): Gaussian; 2009.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter Mater Phys. 1988;37:785. doi: 10.1103/PhysRevB.37.785
  • Petersson GA, Al-Laham MA. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys. 1991;94:6081. doi: 10.1063/1.460447
  • Loboda O. Quantum-chemical studies on porphyrins, fullerenes and carbon nanostructures. 1st ed. Heidelberg: Springer; 2013.
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82:270. doi: 10.1063/1.448799
  • Rohlfing CM, Hay PJ, Martin RL. An effective core potential investigation of Ni, Pd, and Pt and their monohydrides. J Chem Phys. 1986;85:1447. doi: 10.1063/1.451839
  • Foster JP, Weinhold F. Natural hybrid orbitals. J Am Chem Soc. 1980;102:7211. doi: 10.1021/ja00544a007
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2013;33:580. doi: 10.1002/jcc.22885
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33. doi: 10.1016/0263-7855(96)00018-5
  • Bochmann M. Organometallics and catalysis. New York (NY): Oxford University Press; 2015.
  • Leznoff DB, Rancurel C, Sutter J-P, et al. Stable organopalladium(II) and organoruthenium(II) complexes with spin-labeled phosphine ligands. Organometallics. 1999;18:5097. doi: 10.1021/om9905862
  • Grove DM, van Koten G, Ubbels HJC, et al. Organonickel(II) complexes of the tridentate monoanionic ligand o,o'-bis(dimethylamino)methylphenyl (N-C-N). Syntheses and the x-ray crystal structure of the stable nickel(II) formate [Ni(N-C-N)O2CH]. Organometallics. 1984;3:1003. doi: 10.1021/om00085a007
  • Schofield K. Hetero-aromatic nitrogen compounds: pyrroles and pyridines. New York (NY): Springer; 1967.
  • Anafcheh M, Hadipour NL. A computational NICS and 13C NMR characterization of BN-substituted 60C fullerenes. Phys E. 2011;44:400. doi: 10.1016/j.physe.2011.09.005
  • Ghafouri R, Anafcheh M. A computational NICS and 13C NMR characterization of C60-n Si n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci. 2012;23:469. doi: 10.1007/s10876-012-0456-0
  • Ghafouri R, Anafcheh M. A computational NICS and 13C NMR characterization of the polyfluorofullerenes C60Fn (n=18, 20, 24, 36 and 48). J Fluorine Chem. 2013;145:88. doi: 10.1016/j.jfluchem.2012.10.006
  • Sun G, Kertesz M. Theoretical 13C NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory. J Phys Chem A. 2000;104:7398. doi: 10.1021/jp001272r
  • Srivastava AK, Pandey SK, Misra N. Structure, energetics, spectral and electronic properties of B3N3C54 heterofullerene. J Nanostruct Chem. 2016;6:103. doi: 10.1007/s40097-015-0184-8
  • Liu W, Zhao YH, Li Y, et al. Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J Phys Chem C. 2009;113:2028. doi: 10.1021/jp8091418
  • Pearson RG. Chemical hardness and density functional theory. J Chem Sci. 2005;117:369. doi: 10.1007/BF02708340
  • Bandyopadhyay D, Kumar M. The electronic structures and properties of transition metal-doped silicon nanoclusters: a density functional investigation. Chem Phys. 2008;353:170. doi: 10.1016/j.chemphys.2008.08.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.