248
Views
15
CrossRef citations to date
0
Altmetric
Articles

Theoretical insights into the metal chelating and antimicrobial properties of the chalcone based Schiff bases

, &
Pages 636-645 | Received 09 May 2018, Accepted 16 Jan 2019, Published online: 01 Feb 2019

References

  • Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130426. doi: 10.1098/rstb.2013.0426
  • Hersh AL, Newland JG, Beekmann SE, et al. Unmet medical need in infectious diseases. Clin Infect Dis. 2012;54(11):1677–1678. doi: 10.1093/cid/cis275
  • Miri R, Razzaghi-Asl N, Mohammadi MK. QM study and conformational analysis of an Isatin Schiff base as a potential cytotoxic agent. J Mol Model. 2013;19(2):727–735. doi: 10.1007/s00894-012-1586-x
  • Ali SMM, Abul Kalam Azad M, Jesmin M, et al. In vivo anticancer activity of Vanillin semicarbazone. Asian Pac J Trop Biomed. 2012;2(6):438–442. doi: 10.1016/S2221-1691(12)60072-0
  • Ajit Kumar C, Pandeya SN. Synthesis & anticonvulsant activity (chemo shock) of Schiff and mannich bases of Isatin derivatives with 2-aminopyridine (mechanism of action). Int J Pharm Tech Res. 2012;4(2):590–598.
  • Patel RN, Patel PV, Desai KR, et al. Synthesis of new heterocyclic Schiff base, thiazolidinone, and azetidinone compounds and their antibacterial activity and anti-HIV activities. Heterocycl Lett. 2012;2(1):99–105.
  • Kumar KS, Ganguly S, Veerasamy R, et al. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur J Med Chem. 2010;45:5474–5479. doi: 10.1016/j.ejmech.2010.07.058
  • Malladi S, Isloor AM, Isloor S, et al. Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arab J Chem. 2013;6:335–340. doi: 10.1016/j.arabjc.2011.10.009
  • Kostova I, Saso L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr Med Chem. 2013;20:4609–4632. doi: 10.2174/09298673113209990149
  • Asiri AM, Khan SA, Marwani HM, et al. Synthesis, spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theory. J Photochem Photobiol B Biol. 2013;120:82–89. doi: 10.1016/j.jphotobiol.2013.01.007
  • Chaturvedi D, Kamboj M. Role of Schiff base in drug discovery research. Chem Sci J. 2016;7(2):e114. doi: 10.4172/2150-3494.1000e114
  • Kajal A, Bala S, Kamboj S, et al. Schiff bases: a versatile pharmacophore. J Catal. 2013;2013:1–14. doi: 10.1155/2013/893512
  • Malik MA, Dar OA, Gull P, et al. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemCommun. 2018;9(3):409–436. doi: 10.1039/C7MD00526A
  • Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem. 2015;98:69–114. doi: 10.1016/j.ejmech.2015.05.004
  • Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem. 2014;85:758–777. doi: 10.1016/j.ejmech.2014.08.033
  • Kalanithi M, Rajarajan M, Tharmaraj P, et al. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;87:155–162. doi: 10.1016/j.saa.2011.11.031
  • Al-Amiery AA. Synthesis and antioxidant, antimicrobial evaluation, DFT studies of novel metal complexes derivate from Schiff base. Res Chem Intermed. 2012;38:745–759. doi: 10.1007/s11164-011-0414-8
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1-3):51–57. doi: 10.1016/j.cplett.2004.06.011
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82:270–283. doi: 10.1063/1.448799
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299–310. doi: 10.1063/1.448975
  • Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys. 1985;82:284–298. doi: 10.1063/1.448800
  • Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41(2):157–167. doi: 10.1021/ar700111a
  • Xu X, Truhlar DG. Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. J Chem Theory Comput. 2011;7:2766–2779. doi: 10.1021/ct200234r
  • Boys SF, de Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys. 1970;19(4):553–566. doi: 10.1080/00268977000101561
  • Bader RFW. Atoms in molecules, a quantum theory. London: Oxford Science Publications, Clarendon Press; 1990.
  • Popelier PLA, Bader RFW. The existence of an intramolecular C-H-O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett. 1992;189(6):542–548. doi: 10.1016/0009-2614(92)85247-8
  • Cheeseman JR, Carroll MT, Bader RFW. The mechanics of hydrogen bond formation in conjugated systems. Chem Phys Lett. 1988;143(5):450–458. doi: 10.1016/0009-2614(88)87394-9
  • Koch U, Popelier PLA. Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem. 1995;99(24):9747–9754. doi: 10.1021/j100024a016
  • Popelier PLA. Morphy98 a program written by PLA Popelier with a contribution from RGA Bone. Manchester: UMIST; 1998.
  • Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–746. doi: 10.1063/1.449486
  • Glendening ED, Reed AE, Carpenter JE, et al. NBO 3.0 program manual. Madison (WI): Theoretical Chemistry Institute, University of Wisconsin; 1996.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision B.01. Wallingford, CT: Gaussian Inc; 2010.
  • Krieger E, Darden T, Nabuurs SB, et al. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct Funct Genet. 2004;57:678–683. doi: 10.1002/prot.20251
  • Krieger E, Vriend G. Yasara view — molecular graphics for all devices — from smartphones to workstations. Bioinformatics. 2014;30(20):2981–2982. doi: 10.1093/bioinformatics/btu426
  • Young DC. Computational chemistry: a practical guide for applying techniques to real-world problems. New York: A John Wiley Sons; 2001.
  • Zheng H, Cooper DR, Porebski PJ, et al. Checkmymetal: a macromolecular metal-binding validation tool. Acta Crystallogr Sect D Struct Biol. 2017;D73:223–233. doi: 10.1107/S2059798317001061
  • Kuppuraj G, Dudev M, Lim C. Factors governing metal-ligand distances and coordination geometries of metal complexes factors governing metal-ligand distances and coordination geometries of metal. J Phys Chem B. 2009;113:2952–2960. doi: 10.1021/jp807972e
  • Irving H, Williams RJP. The stability of transition-metal complexes. J Chem Soc. 1953;0:3192–3210. doi: 10.1039/jr9530003192
  • Arnold WD, Oldfield E. The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc. 2000;122:12835–12841. doi: 10.1021/ja0025705
  • Lu YX, Zou JW, Wang YH, et al. Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A. 2007;111:10781–10788. doi: 10.1021/jp0740954
  • Shankar R, Kolandaivel P, Senthilkumar L. Coordination and binding properties of zwitterionic glutathione with transition metal cations. Inorganica Chim Acta. 2012;387:125–136. doi: 10.1016/j.ica.2012.01.004
  • Shankar R, Kolandaivel P, Senthilkumar L. Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cation complexes. J Phys Org Chem. 2011;24:553–567. doi: 10.1002/poc.1786
  • Pitchumani Violet Mary C, Shankar R, Vijayakumar S, et al. Interaction studies of human prion protein (HuPrP109–111: methionine-lysine-histidine) tripeptide model with transition metal cations. J Mol Graph Model. 2016;69:111–126. doi: 10.1016/j.jmgm.2016.08.012
  • Pitchumani Violet Mary C, Vijayakumar S, Shankar R. Metal chelating ability and antioxidant properties of curcumin-metal complexes – a DFT approach. J Mol Graph Model. 2018;79:1–14. doi: 10.1016/j.jmgm.2017.10.022
  • Zhang Y. Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states. Inorg Chem. 1982;21(11):3886–3889. doi: 10.1021/ic00141a005
  • Tas E, Aslanoglu M, Ulusoy M, et al. Synthesis, spectral characterization and electrochemical studies of copper(II) and cobalt(II) complexes with novel tetradentate salicylaldimines. J Coord Chem. 2004;57(8):677–684. doi: 10.1080/00958970410001720980
  • Mishra AP, Mishra R, Jain R, et al. Synthesis of new VO(II), Co(II), Ni(II) and Cu(II) complexes with Isatin-3-chloro-4-floroaniline and 2-pyridinecarboxylidene-4-aminoantipyrine and their antimicrobial studies. Mycobiology. 2012;40(1):20–26. doi: 10.5941/MYCO.2012.40.1.020
  • Dharmaraj N, Viswanatharmurthi P, Natarajan K. Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity. Transit Met Chem. 2001;26:105–109. doi: 10.1023/A:1007132408648
  • Nair MS, Arish D. Synthesis, characterization and biological studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes involving a potentially tetradentate Schiff base ligand. Trans Indian Inst Met. 2011;64(3):287–292. doi: 10.1007/s12666-011-0058-9
  • Arish D, Nair MS. Synthesis, characterization, antimicrobial, and nuclease activity studies of some metal Schiff-base complexes. J Coord Chem. 2010;63(9):1619–1628. doi: 10.1080/00958972.2010.483729
  • Kleinzeller A. Charles Ernest Overton’s concept of a cell membrane. In: Deamer DW, Kleinzeller A, Fambrough DM, editors. Membrane permeability: 100 years since Ernest Overton. San Diego: Academic Press; 1999. p. 1–22.
  • Tweedy BG. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology. 1964;55:910–914.
  • Raman N, Muthuraj V, Ravichandran S, et al. Synthesis, characterization and electrochemical behavior of Cu (II), Co (II), Ni (II) and Zn (II) complexes derived from acetylacetone and p- anisidine and their antimicrobial activity. J Chem Sci. 2003;115:161–167. doi: 10.1007/BF02704255

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.