429
Views
23
CrossRef citations to date
0
Altmetric
Articles

Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene

, &
Pages 646-651 | Received 03 Sep 2018, Accepted 29 Jan 2019, Published online: 15 Feb 2019

References

  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191. doi: 10.1038/nmat1849
  • Evans WJ, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett. 2010;96. doi:10.1063/1.3435465.
  • Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92. doi:10.1063/1.2907977.
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534. doi: 10.1126/science.1158877
  • Britnell L, Gorbachev RV, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 2012;335:947–950. doi: 10.1126/science.1218461
  • Georgiou T, Jalil R, Belle BD, et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol. 2012;8:100–103. doi: 10.1038/nnano.2012.224
  • Lotfi E, Neek-Amal M, Elahi M. Molecular dynamics simulation of temperature profile in partially hydrogenated graphene and graphene with grain boundary. J Mol Graph Model. 2015;62:38–42. doi: 10.1016/j.jmgm.2015.08.007
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907. doi: 10.1021/nl0731872
  • Hu J, Ruan X, Chen YP. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009;9:2730–2735. doi: 10.1021/nl901231s
  • Wang H, Hu S, Takahashi K, et al. Experimental study of thermal rectification in suspended monolayer graphene. Nat Commun. 2017;8:15843. doi: 10.1038/ncomms15843
  • Murad S, Puri I. Thermal transport across nanoscale solid-fluid interfaces. Appl Phys Lett. 2008;92:133105. doi: 10.1063/1.2905281
  • Murad S, Puri IK. Communication: thermal rectification in liquids by manipulating the solid-liquid interface. J Chem Phys. 2012;137:081101. doi: 10.1063/1.4749288
  • Cartoix X, Colombo L, Rurali R. Thermal rectification by design in telescopic Si nanowires. Nano Lett. 2015;15:8255–8259. doi: 10.1021/acs.nanolett.5b03781
  • Rajabpour A, Vaez Allaei SM, Kowsary F. Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett. 2011;99:051917. doi: 10.1063/1.3622480
  • Shavikloo M, Kimiagar S. Thermal rectification in partially hydrogenated graphene with grain boundary, a non-equilibrium molecular dynamics study. Comput Mater Sci. 2017;139:330–334. doi: 10.1016/j.commatsci.2017.08.024
  • Rurali R, Cartoixà X, Colombo L. Heat transport across a SiGe nanowire axial junction: interface thermal resistance and thermal rectification. Phys Rev B – Condens Matter Mater Phys. 2014;90. doi:10.1103/PhysRevB.90.041408.
  • Sellan D, Landry E, Turney J, et al. Size effects in molecular dynamics thermal conductivity predictions. Phys Rev B. 2010;81:1–10. doi: 10.1103/PhysRevB.81.214305
  • Hu J, Schiffli S, Vallabhaneni A, et al. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study. Appl Phys Lett. 2010;97. doi:10.1063/1.3491267.
  • Zhong WR, Zhang MP, Ai BQ, et al. Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett. 2011;98. doi:10.1063/1.3567415.
  • Jiang JW, Park HS, Rabczuk T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J Appl Phys. 2013;114:064307. doi: 10.1063/1.4818414
  • Aksamija Z, Knezevic I. Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl Phys Lett. 2011;98:141919. doi: 10.1063/1.3569721
  • Nika DL, Askerov AS, Balandin AA. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012;12:3238–3244. doi: 10.1021/nl301230g
  • Cao H, Guo Z, Xiang H, et al. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons. Phys Lett A. 2011;376:525–528. doi: 10.1016/j.physleta.2011.11.016
  • Yang N, Zhang G, Li B. Carbon nanocone: a promising thermal rectifier. Appl Phys Lett. 2008;93:1–17.
  • Yang N, Hu S, Ma D, et al. Nanoscale graphene disk: a natural functionally graded material – how is Fourier’s law violated along radius direction of 2D disk. Sci Rep. 2015;5:14878. doi: 10.1038/srep14878
  • Lotfi E, Neek-Amal M. Temperature distribution in graphene doped with nitrogen and graphene with grain boundary. J Mol Graph Model. 2017;74:100–104. doi: 10.1016/j.jmgm.2017.03.005
  • Faugeras C, Faugeras B, Orlita M, et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano. 2010;4:1889–1892. doi: 10.1021/nn9016229
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Melchionna S, Ciccotti G, Holian BL. Hoover NPT dynamics for systems varying in shape and size. Mol Phys. 1993;78:533–544. doi: 10.1080/00268979300100371
  • Lukes JR, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes. J Heat Transfer. 2007;129:705. doi: 10.1115/1.2717242
  • Maiti A, Mahan GD, Pantelides ST. Dynamical simulations of nonequilibrium processes – heat flow and the Kapitza resistance across grain boundaries. Solid State Commun. 1997;102:517–521. doi: 10.1016/S0038-1098(97)00049-5
  • Liu R, Wang L. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–5201. doi: 10.1039/C4CP05495D
  • Liu R, Wang L, Jiang J. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3:095601. doi: 10.1088/2053-1591/3/9/095601
  • Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B – Condens Matter Mater Phys. 2012;86. doi:10.1103/PhysRevB.86.064305.
  • Kittel C. Introduction to solid state physics. 2010. doi:10.1007/978-3-540-93804-0.
  • Hu J, Ruan X, Jiang Z, et al. Molecular dynamics calculation of thermal conductivity of graphene nanoribbons. In: AIP Conf. Proc. AIP. 2009:135–138. doi:10.1063/1.3251208.
  • Xu X, Pereira LFC, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun. 2014;5:1–6.
  • Saeedi A, Yousefi Akizi F, Khademsadr S, et al. Thermal rectification of a single-wall carbon nanotube: A molecular dynamics study. Solid State Commun. 2014;179:54–58. doi: 10.1016/j.ssc.2013.10.026
  • Pop E, Varshney V, Roy A. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281. doi: 10.1557/mrs.2012.203
  • Cao A, Yuan Y. Atomistic study on the strength of symmetric tilt grain boundaries in graphene. Appl Phys Lett. 2012;100:053529.
  • Cao A, Qu J. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys. 2012;112. doi:10.1063/1.4730908.
  • Felix IM, Pereira LFC. Thermal conductivity of graphene-hBN superlattice ribbons. Sci Rep. 2018;8:2737. doi: 10.1038/s41598-018-20997-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.