231
Views
4
CrossRef citations to date
0
Altmetric
Articles

Generalised local bond order parameter analysis: application to colloidal particles with dendritic polymer brushes

, , &
Pages 743-751 | Received 27 Aug 2018, Accepted 09 Feb 2019, Published online: 19 Mar 2019

References

  • Boles MA, Engel M, Talapin DV. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196
  • Vogiatzis GG, Theodorou DN. Structure of polymer layers grafted to nanoparticles in silica-polystyrene nanocomposites. Macromolecules. 2013;46:4670–4683. doi: 10.1021/ma400107q
  • Terao T. Monte Carlo simulation of polymer–nanoparticle composites. Chem Lett. 2012;41:1425–1427. doi: 10.1246/cl.2012.1425
  • Cerdà JJ, Sintes T, Toral R. Pair interaction between end-grafted polymers onto spherical surfaces: a Monte Carlo study. Macromolecules. 2003;36:1407–1413. doi: 10.1021/ma0213955
  • Ulama J, Oskolkova MZ, Bergenholtz J. Polymer-graft-mediated interactions between colloidal spheres. Langmuir. 2016;32:2882–2890. doi: 10.1021/acs.langmuir.5b04739
  • Loverso F, Egorov SA, Binder K. Interaction between polymer brush-coated spherical nanoparticles: effect of solvent quality. Macromolecules. 2012;45:8892–8902. doi: 10.1021/ma301651z
  • Wittemann A, Drechsler M, Talmon Y, et al. High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. J Am Chem Soc. 2005;127:9688–9689. doi: 10.1021/ja0513234
  • Ndoro TVM, Voyiatzis E, Ghanbari A, et al. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules. 2011;44:2316–2327. doi: 10.1021/ma102833u
  • Kłos J, Pakura JT. Interaction of a spherical particle with linear chains. II. Chains end-grafted at the particle surface. J Chem Phys. 2003;118:7682–7689. doi: 10.1063/1.1564054
  • Milner ST. Polymer brushes. Science. 1991;251:905–914. doi: 10.1126/science.251.4996.905
  • Meng D, Kumar SK, Lane JMD, et al. Effective interactions between grafted nanoparticles in a polymer matrix. Soft Matter. 2012;8:5002–5010. doi: 10.1039/c2sm07395a
  • Samanvaya S, Agarwal P, Archer LA. Tethered nanoparticle-polymer composites: phase stability and curvature. Langmuir. 2012;28:6276–6281. doi: 10.1021/la2049234
  • Ohno K, Morinaga T, Takeno S, et al. Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules. 2006;39:1245–1249. doi: 10.1021/ma0521708
  • Huang F, Addas K, Ward A, et al. Pair potential of charged colloidal stars. Phys Rev Lett. 2009;102:108302. doi: 10.1103/PhysRevLett.102.108302
  • Pickett GT. Classical path analysis of end-grafted dendrimers: dendrimer forest. Macromolecules. 2001;34:8784–8791. doi: 10.1021/ma010917y
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–132. doi: 10.1295/polymj.17.117
  • Polotsky AA, Gillich T, Borisov OV, et al. Dendritic versus linear polymer brushes: self-consistent field modeling, scaling theory, and experiments. Macromolecules. 2010;43:9555–9566. doi: 10.1021/ma101897x
  • Kröger M, Peleg O, Halperin A. From dendrimers to dendronized polymers and forests: scaling theory and its limitations. Macromolecules. 2010;43:6213–6224. doi: 10.1021/ma100861b
  • Merlitz H, Wu CX, Sommer JU. Starlike polymer brushes. Macromolecules. 2011;44:7043–7049. doi: 10.1021/ma201363u
  • Gergidis LN, Kalogirou A, Vlahos C. Dendritic brushes under good solvent conditions: a simulation study. Langmuir. 2012;28:17176–17185. doi: 10.1021/la3039957
  • Terao T. Structural formation of dendritic polymer brushes: analysis using an explicit solvent model. Chem Lett. 2015;44:1092–1094. doi: 10.1246/cl.150305
  • Cui W, Su CF, Merlitz H, et al. Structure of dendrimer brushes: mean-field theory and MD simulations. Macromolecules. 2014;47:3645–3653. doi: 10.1021/ma500129h
  • Rud OV, Polotsky AA, Gillich T, et al. Dendritic spherical polymer brushes: theory and self-consistent field modeling. Macromolecules. 2013;46:4651–4662. doi: 10.1021/ma302632b
  • Borisov OV, Zhulina EB, Polotsky AA, et al. Interactions between brushes of root-tethered dendrons. Macromolecules. 2014;47:6932–6945. doi: 10.1021/ma501082p
  • Kanie K, Matsubara M, Zeng X, et al. Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J Am Chem Soc. 2012;134:808–811. doi: 10.1021/ja2095816
  • Gillich T, Acikgöz C, Isa L, et al. PEG-stabilized core–shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano. 2013;7:316–329. doi: 10.1021/nn304045q
  • Israelachvili JN. Intermolecular and surface forces. 3rd ed. Burlington (MA): Academic Press; 2011.
  • Grest GS, Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A. 1986;33:3628–3631. doi: 10.1103/PhysRevA.33.3628
  • Kremer K, Grest GS. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys. 1990;92:5057–5086. doi: 10.1063/1.458541
  • Steinhardt P, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B. 1983;28:784–805. doi: 10.1103/PhysRevB.28.784
  • Lechner W, Dellago C. Accurate determination of crystal structures based on averaged local bond order parameters. J Chem Phys. 2008;129:114707. doi: 10.1063/1.2977970
  • Binder K, editor. Monte Carlo and molecular dynamics simulations in polymer sciences. New York (NY): Oxford university press; 1995.
  • Murat M, Grest GS. Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules. 1996;29:1278–1285. doi: 10.1021/ma951219e
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford university press; 2017.
  • Frenkel D, Smit B. Understanding molecular simulation 2nd ed.: from algorithms to applications. San Diego (CA): Academic press; 2001.
  • Theodorou DN. Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res. 2010;49:3047–3058. doi: 10.1021/ie9019006
  • Terao T. Counterion distribution and many-body interaction in charged dendrimer solutions. Mol Phys. 2006;104:2507–2513. doi: 10.1080/00268970600796842
  • Terao T. Structural formation and many-body effect of concentrated dendrimer solutions by computer simulations. J Appl Crystallogr. 2007;40:s581–s584. doi: 10.1107/S0021889807018055
  • Qian HJ, Carbone P, Chen X, et al. Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures. Macromolecules. 2008;41:9919–9929. doi: 10.1021/ma801910r
  • Jagla EA. Phase behavior of a system of particles with core collapse. Phys Rev E. 1998;58:1478–1486. doi: 10.1103/PhysRevE.58.1478
  • Malescio G, Pellicane G. Stripe phases from isotropic repulsive interactions. Nat Mater. 2003;2:97–100. doi: 10.1038/nmat820
  • Terao T, Oguri Y. Two-stage melting transition of bilayer systems under geometrical confinement: multicolour domain decomposition Monte Carlo simulation. Mol Sim. 2012;38:928–933. doi: 10.1080/08927022.2012.672740
  • Terao T. Tetratic phase of Hertzian spheres: Monte Carlo simulation. J Chem Phys. 2013;139:134501. doi: 10.1063/1.4822101
  • Mickel W, Kapfer SC, Schröder-Turk GE, et al. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J Chem Phys. 2013;138:044501. doi: 10.1063/1.4774084
  • Rein ten Wolde P, Ruiz-Montero MJ, Frenkel D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J Chem Phys. 1996;104:9932–9947. doi: 10.1063/1.471721

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.