746
Views
3
CrossRef citations to date
0
Altmetric
Articles

Molecular simulation of hydrogen storage and transport in cellulose

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 170-179 | Received 06 Mar 2018, Accepted 05 Mar 2019, Published online: 27 Mar 2019

References

  • Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42. doi: 10.1038/nature01286
  • Schuth F. Chemical compounds for energy storage. Chem Ing Tech. 2011;83(11):1984–1993. doi: 10.1002/cite.201100147
  • Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed. 2009;48(36):6608–6630. doi: 10.1002/anie.200806293
  • Müller K, Arlt W. Status and development in hydrogen transport and storage for energy applications. Energy Technol. 2013;1(9):501–511. doi: 10.1002/ente.201300055
  • McKeown NB, Budd PM, Book D. Microporous polymers as potential hydrogen storage materials. Macromol Rapid Commun. 2007;28(9):995–1002. doi: 10.1002/marc.200700054
  • Germain J, Frechet JMJ, Svec F. Nanoporous polymers for hydrogen storage. Small. 2009;5(10):1098–1111. doi: 10.1002/smll.200801762
  • Mandal TK, Gregory DH. Hydrogen: a future energy vector for sustainable development. Proc Inst Mech Eng Part C. 2010;224(3):539–558. doi: 10.1243/09544062JMES1774
  • Liu C, Li F, Ma LP. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–E62. doi: 10.1002/adma.200903328
  • Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353–358. doi: 10.1038/35104634
  • Düren T, Bae YS, Snurr RQ. Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev. 2009;38(5):1237. doi: 10.1039/b803498m
  • Pukazhselvan D, Kumar V, Singh SK. High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy. 2012;1(4):566–589. doi: 10.1016/j.nanoen.2012.05.004
  • Fairen-Jimenez D, Moggach SA, Wharmby MT, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc. 2011;133(23):8900–8902. doi: 10.1021/ja202154j
  • Trewin A, Willock DJ, Cooper AI. Atomistic simulation of micropore structure, surface area, and gas sorption properties for amorphous microporous polymer networks. J Phys Chem. 2008;1112:20549–20559.
  • McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006;35(8):675. doi: 10.1039/b600349d
  • LJ Abbott, CM Colina. Atomistic structure generation and gas adsorption simulations of microporous polymer networks. Macromolecules. 2011;44(11):4511–4519. doi: 10.1021/ma200303p
  • Dawson R, Cooper AI, Adams DJ. Nanoporous organic polymer networks. Prog Polym Sci. 2012;37(4):530–563. doi: 10.1016/j.progpolymsci.2011.09.002
  • Larsen GS, Lin P, Siperstein FR, et al. Methane adsorption in PIM-1. Adsorption. 2011;17(1):21–26. doi: 10.1007/s10450-010-9281-7
  • Madkour TM, Mark JE. Molecular modeling investigation of the fundamental structural parameters of polymers of intrinsic microporosity for the design of tailor-made ultra-permeable and highly selective gas separation membranes. J Memb Sci. 2013;431:37–46. doi: 10.1016/j.memsci.2012.12.033
  • Minelli M, Friess K, Vopička O, et al. Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilib. 2013;347:35–44. doi: 10.1016/j.fluid.2013.03.003
  • Heuchel M, Fritsch D, Budd PM, et al. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). J Memb Sci. 2008;318(1–2):84–99. doi: 10.1016/j.memsci.2008.02.038
  • Wood CD, Tan B, Trewin A, et al. Hydrogen storage in microporous\nhypercrosslinked organic polymer networks. Chem Mater. 2007;19(8):2034–2048. doi: 10.1021/cm070356a
  • Jiang S, Jelfs KE, Holden D, et al. Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. J Am Chem Soc. 2013;135(47):17818–17830. doi: 10.1021/ja407374k
  • Medronho B, Romano A, Miguel MG, et al. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose. 2012;19(3):581–587. doi: 10.1007/s10570-011-9644-6
  • Krishnamachari P, Hashaikeh R, Tiner M. Modified cellulose morphologies and its composites; SEM and TEM analysis. Micron. 2011;42(8):751–761. doi: 10.1016/j.micron.2011.05.001
  • Pérez S, Samain D. Structure and engineering of celluloses. Adv Carbohydr Chem Biochem. 2010;64(C):26–116.
  • Rahimi M, Behrooz R. Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw. Int J Polym Mater. 2011;60(8):529–541. doi: 10.1080/00914037.2010.531820
  • Oehme DP, Downton MT, Doblin MS. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant Physiol. 2015;168(1):3–17. doi: 10.1104/pp.114.254664
  • Brown RM, Saxena IM. Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem. 2000;38(1–2):57–67. doi: 10.1016/S0981-9428(00)00168-6
  • Matthews JF, Skopec CE, Mason PE, et al. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res. 2006;341(1):138–152. doi: 10.1016/j.carres.2005.09.028
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44(22):3358–3393. doi: 10.1002/anie.200460587
  • Atalla RH. The structures of cellulose. Mater Res Soc Proc. 1990;197:89–98. doi: 10.1557/PROC-197-89
  • Ding SY, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. Agric Food Chem. 2006;54(3):597–606. doi: 10.1021/jf051851z
  • Ciolacu D, Ciolacu F, Popa VI. Supramolecular structure – a key parameter for cellulose biodegradation. Macromol Symp. 2008;272(1):136–142. doi: 10.1002/masy.200851220
  • Nishiyama Y, Sugiyama J, Chanzy H, et al. ‌Crystal structure and hydrogen bonding system in cellulose Iα‌ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2003;125(47):14300–14306. doi: 10.1021/ja037055w
  • Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(November):850–861. doi: 10.1038/nrm1746
  • Namboori K, Ramachandran KI, Deepa G. 2008. Computational chemistry and molecular modeling. New York (NY): Springer.
  • Damm W, Frontera A, Tirado-Rives J, et al. OPLS all-atom force field for carbohydrates. J Comput Chem. 1997;18(16):1955–1970. doi: 10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L
  • Miyamoto H, Yamane C, Ueda K. Molecular dynamics simulation of dehydration in cellulose/water crystals. Cellulose. 2015;22(5):2899–2910. doi: 10.1007/s10570-015-0716-x
  • Miyamoto H, Schnupf U, Crowley MF, et al. Comparison of the simulations of cellulosic crystals with three carbohydrate force fields. Carbohydr Res. 2016;422:17–23. doi: 10.1016/j.carres.2016.01.001
  • Guvench O, Mallajosyula SS, Raman EP, et al. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput. 2011;7(10):3162–3180. doi: 10.1021/ct200328p
  • Momany FA, Willett J, Schnupf U, et al. Molecular dynamics simulations of a cyclic-DP-240 amylose fragment in a periodic cell: glass transition temperature and water diffusion. Carbohydr Polym. 2009;78(4):978–986. doi: 10.1016/j.carbpol.2009.07.034
  • Banks JL, Beard HS, Cao Y. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J Comput Chem. 2005;26(16):1752–1780. doi: 10.1002/jcc.20292
  • Hadden JA, French AD, Woods RJ. Unraveling cellulose microfibrils: a twisted tale. Biopolymers. 2013;99(10):746–756. doi: 10.1002/bip.22279
  • Bergenstråhle M, Wohlert J, Larsson PT, et al. Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B. 2008;112(9):2590–2595. doi: 10.1021/jp074641t
  • Liao R, Zhu M, Zhou X, et al. Molecular dynamics study of the disruption of H-BONDS by water molecules and its diffusion behavior in amorphous cellulose. Modern Phys Lett B. 2012;26(14):1–14. doi: 10.1142/S0217984912500881
  • Kulasinski K, Keten S, Churakov SV, et al. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose. 2014;21(3):1103–1116. doi: 10.1007/s10570-014-0213-7
  • Tanaka F, Iwata T. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose. 2006;13(5):509–517. doi: 10.1007/s10570-006-9068-x
  • Djahedi C, Berglund LA, Wohlert J. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Carbohydr Polym. 2015;130:175–182. doi: 10.1016/j.carbpol.2015.04.073
  • Bergenstråhle M, Berglund LA, Mazeau K. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B. 2007;111(30):9138–9145. doi: 10.1021/jp072258i
  • Chen P, Nishiyama Y, Mazeau K. Torsional entropy at the origin of the reversible temperature- induced phase transition of cellulose. Macromolecules. 2012;45(1):362–368. doi: 10.1021/ma201954s
  • Chen W, Lickfield GC, Yang CQ. Molecular modeling of cellulose in amorphous state. Part I: Model building and plastic deformation study. Polymer. 2004;45(3):1063–1071. doi: 10.1016/j.polymer.2003.11.020
  • Wohlert J, Bergenstråhle-Wohlert M, Berglund LA. Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose. 2012;19(6):1821–1836. doi: 10.1007/s10570-012-9774-5
  • Bazooyar F, Taherzadeh M, Niklasson C, et al. Molecular modelling of cellulose dissolution. J Comput Theor Nanosci. 2013;10(11):2639–2646. doi: 10.1166/jctn.2013.3263
  • Glasser WG, Atalla RH, Blackwell J, et al. About the structure of cellulose: debating the Lindman hypothesis. Mol Biosci. 2012;19(3):589–598.
  • Heiner AP, Kuutti L, Teleman O. Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr Res. 1998;306(1–2):205–220. doi: 10.1016/S0008-6215(97)10053-2
  • Li L, Pérré P, Frank X, et al. A coarse-grain force-field for xylan and its interaction with cellulose. Carbohydr Polym. 2015;127:438–450. doi: 10.1016/j.carbpol.2015.04.003
  • Mazeau K, Wyszomirski M. Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose. 2012;19(5):1495–1506. doi: 10.1007/s10570-012-9757-6
  • Woodcock S, Henrissat B, Sugiyama J. Docking of Congo Red to the surface of crystalline cellulose using molecular mechanics. Biopolymers. 1995;36(2):201–210. doi: 10.1002/bip.360360208
  • Da Silva Perez D, Ruggiero R, Morais LC, et al. Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir. 2004;20(8):3151–3158. doi: 10.1021/la0357817
  • Todorov I, Smith W. DL_POLY_3: the CCP5 national UK code for molecular-dynamics simulations. Philos Trans. 2004;362(1822):1835–1852. doi: 10.1098/rsta.2004.1419
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16(20):1911. doi: 10.1039/b517931a
  • Purton J, Crabtree J, Parker SC. DL_MONTE: a general purpose program for parallel Monte Carlo simulation. Mol Simul. 2013;39:1240–1252. doi: 10.1080/08927022.2013.839871
  • Brukhno A, Grant J, Underwood TL. DL MONTE: a multipurpose code for Monte Carlo simulation. Mol Sim. 2019;0:1–21. doi: 10.1080/08927022.2019.1569760
  • Yong C. Descriptions and implementations of DL_F notation: a natural chemical expression system of atom types for molecular simulations. J Chem Inf Model. 2016;56(8):1405–1409. doi: 10.1021/acs.jcim.6b00323
  • Gomes TCF, Skaf MS. Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem. 2012;33(14):1338–1346. doi: 10.1002/jcc.22959
  • Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen bonding system in cellulose Iβ‌ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124(31):9074–9082. doi: 10.1021/ja0257319
  • Park S, Venditti RA, Jameel H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym. 2006;66(1):97–103. doi: 10.1016/j.carbpol.2006.02.026
  • Guo C, Zhou L, Lv J. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos. 2013;21(7):449–456.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OLPS All-Atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(15):11225–11236. doi: 10.1021/ja9621760
  • Kony D, Damm W, Stoll S, et al. An improved OPLS-AA force field for carbohydrates. J Comput Chem. 2002;23(15):1416–1429. doi: 10.1002/jcc.10139
  • Spycher NF, Reed MH. Fugacity coefficients of H2, CO2, CH4, H2O and of H2O- CO2-CH4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling. Geochim Cosmochim Acta. 1988;52(3):739–749. doi: 10.1016/0016-7037(88)90334-1
  • Yang Q, Zhong C. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. J Phys Chem B. 2005;109(24):11862–11864. doi: 10.1021/jp051903n
  • Zhang Q, Bulone V, Ågren H, et al. ‌A molecular dynamics study of the thermal response of crystalline cellulose Iβ‌. Cellulose. 2011;18(2):207–221. doi: 10.1007/s10570-010-9491-x
  • Bimbo N, Ting VP, Sharpe JE, et al. Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids Surf A. 2013;437:113–119. doi: 10.1016/j.colsurfa.2012.11.008
  • Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–1276. doi: 10.1107/S0021889811038970

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.