386
Views
9
CrossRef citations to date
0
Altmetric
Articles

A computational avenue towards understanding and design of zwitterionic anti-biofouling materials

Pages 1211-1222 | Received 11 Jan 2019, Accepted 19 Mar 2019, Published online: 03 Apr 2019

References

  • Chen S, Jiang S. An new avenue to Nonfouling materials. Adv Mater. 2008;20(2):335–338.
  • Chen S, Li L, Zhao C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer (Guildf). 2010;51(23):5283–5293.
  • Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater. 2015;27(1):15–26.
  • Gule NP, Begum NM, Klumperman B. Advances in biofouling mitigation: a review. Crit Rev Environ Sci Technol. 2016;46(6):535–555.
  • Zeriouh O, Reinoso-Moreno JV, López-Rosales L, et al. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol. 2017;37(8):1006–1023.
  • Voskerician G, Shive MS, Shawgo RS, et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials. 2003;24(11):1959–1967.
  • Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2011;201(2):244 (1–10).
  • Jeon SI, Lee JH, Andrade JD, et al. Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci. 1991;142(1):149–158.
  • Jeon SI, Andrade JD. Protein-surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interface Sci. 1991;142(1):159–166.
  • Li L, Chen S, Zheng J, et al. Protein adsorption on oligo(ethylene glycol)-terminated Alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J Phys Chem B. 2005;109(7):2934–2941.
  • Sharma S, Johnson RW, Desai TA. Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir. 2004;20(2):348–356.
  • Tugulu S, Klok H-A. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules. 2008;9(3):906–912.
  • Leckband D, Sheth S, Halperin A. Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci, Polym Ed. 1999;10(10):1125–1147.
  • Chen S, Zheng J, Li L, et al. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127(41):14473–14478.
  • Ladd J, Zhang Z, Chen S, et al. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human Serum and Plasma. Biomacromolecules. 2008;9(5):1357–1361.
  • Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 2010;22(9):920–932.
  • Schlenoff JB. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir. 2014;30(32):9625–9636.
  • Bernards M, He Y. Polyampholyte polymers as a versatile zwitterionic biomaterial platform. Biomater Sci Polym Ed. 2014;25(14–15):1479–1488.
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13(6):064101.
  • Cao B, Tang Q, Cheng G. Recent advances of zwitterionic carboxybetaine materials and their derivatives. J Biomater Sci Polym Ed. 2014;25(14–15):1502–1513.
  • Ventura C, Guerin AJ, El-Zubir O, et al. Marine antifouling performance of polymer coatings incorporating zwitterions. Biofouling. 2017;33(10):892–903.
  • Gray JJ. The interaction of proteins with solid surfaces. Curr Opin Struct Biol. 2004;14(1):110–115.
  • Chen H, Yuan L, Song W, et al. Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci. 2008;33(11):1059–1087.
  • Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci. 2011;162(1):87–106.
  • Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799.
  • Wei Q, Becherer T, Angioletti-Uberti S, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed. 2014;53(31):8004–8031.
  • Mulheran P, Kubiak K. Protein adsorption mechanisms on solid surfaces: lysozyme-on-mica. Mol Simul. 2009;35(7):561–566.
  • Dong X-L, Qi W, Tao W, et al. The dynamic behaviours of protein BMP-2 on hydroxyapatite nanoparticles. Mol Simul. 2011;37(13):1097–1104.
  • Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996;379:219–225.
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–647.
  • Giovambattista N, Debenedetti PG, Rossky PJ. Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B. 2007;111(32):9581–9587.
  • Imai T, Kovalenko A, Hirata F. Hydration structure, thermodynamics, and functions of protein studied by the 3D-RISM theory. Mol Simul. 2006;32(10–11):817–824.
  • Ȧqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem. 1990;94(21):8021–8024.
  • Fu J, Schlenoff JB. Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. J Am Chem Soc. 2016;138(3):980–990.
  • Fennell CJ, Bizjak A, Vlachy V, et al. Ion Pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B. 2009;113(19):6782–6791.
  • Baron R, Setny P, McCammon JA. Water in cavity−ligand recognition. J Am Chem Soc. 2010;132(34):12091–12097.
  • Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl. 2015;54(11):3290–3327.
  • Setny P, Baron R, McCammon JA. How can hydrophobic association be enthalpy driven? J Chem Theory Comput. 2010;6(9):2866–2871.
  • Rodier F, Bahadur RP, Chakrabarti P, et al. Hydration of protein–protein interfaces. Proteins: Structure, Function, Bioinformatics. 2005;60(1):36–45.
  • Bellissent-Funel M-C, Hassanali A, Havenith M, et al. Water determines the structure and dynamics of proteins. Chem Rev. 2016;116(13):7673–7697.
  • Zheng J, Li L, Tsao H-K, et al. Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation Study. Biophys. J. 2005;89(1):158–166.
  • He Y, Hower J, Chen S, et al. Molecular simulation Studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24(18):10358–10364.
  • He Y, Chang Y, Hower JC, et al. Origin of repulsive force and structure/dynamics of interfacial water in OEG–protein interactions: a molecular simulation study. Phys Chem Chem Phys. 2008;10(36):5539–5544.
  • Hower JC, He Y, Bernards MT, et al. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. J Chem Phys. 2006;125(21):214704.
  • Hower JC, He Y, Jiang S. A molecular simulation study of methylated and hydroxyl sugar-based self-assembled monolayers: surface hydration and resistance to protein adsorption. J Chem Phys. 2008;129(21):215101.
  • Chen H, Zhao C, Zhang M, et al. Molecular understanding and structural-based design of polyacrylamides and polyacrylates as antifouling materials. Langmuir. 2016;32(14):3315–3330.
  • Xiang Y, Xu R-G, Leng Y. Molecular simulations of the hydration behavior of a zwitterion brush array and its antifouling property in an aqueous environment. Langmuir. 2018;34(6):2245–2257.
  • Cao Z, Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today. 2012;7(5):404–413.
  • Shao Q, He Y, White AD, et al. Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B. 2010;114(49):16625–16631.
  • Hower JC, Bernards MT, Chen S, et al. Hydration of ‘nonfouling’ functional groups. J Phys Chem B. 2009;113(1):197–201.
  • Cheng G, Liao M, Zhao D, et al. Molecular understanding on the underwater oleophobicity of self-assembled monolayers: zwitterionic versus nonionic. Langmuir. 2017;33(7):1732–1741.
  • Shao Q, Jiang S. Effect of carbon spacer length on zwitterionic carboxybetaines. J Phys Chem B. 2013;117(5):1357–1366.
  • Weers JG, Rathman JF, Axe FU, et al. Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir. 1991;7(5):854–867.
  • Du H, Qian X. The hydration properties of carboxybetaine zwitterion brushes. J Comput Chem. 2016;37(10):877–885.
  • Zhang Z, Vaisocherová H, Cheng G, et al. Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromolecules. 2008;9(10):2686–2692.
  • Vaisocherová H, Zhang Z, Yang W, et al. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-material selection and protein immobilization optimization. Biosens Bioelectron. 2009;24(7):1924–1930.
  • Mi L, Giarmarco MM, Shao Q, et al. Divalent cation-mediated polysaccharide interactions with zwitterionic surfaces. Biomaterials. 2012;33(7):2001–2006.
  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22(5):405–417.
  • Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2012;64:116–127.
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–221.
  • Pelegri-O’Day EM, Lin E-W, Maynard HD. Therapeutic protein-Polymer conjugates: advancing beyond PEGylation. J Am Chem Soc. 2014;136(41):14323–14332.
  • Boutureira O, Bernardes GJL. Advances in chemical protein modification. Chem Rev. 2015;115(5):2174–2195.
  • Shao Q, He Y, White AD, et al. Different effects of zwitterion and ethylene glycol on proteins. J Chem Phys. 2012;136(22):225101.
  • Shao Q, White AD, Jiang S. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study. J Phys Chem B. 2014;118(1):189–194.
  • Keefe AJ, Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem. 2011;4:59–63.
  • Baker SL, Munasinghe A, Murata H, et al. Intramolecular interactions of conjugated polymers mimic molecular chaperones to stabilize protein-polymer conjugates. Biomacromolecules. 2018;19(9):3798–3813.
  • Xiao S, Ren B, Huang L, et al. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng. 2018;19:86–93.
  • Georgiev GS, Kamenska EB, Vassileva ED, et al. Self-Assembly, Antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules. 2006;7(4):1329–1334.
  • Kumar R, Fredrickson G. Theory of polyzwitterion conformations. J Chem Phys. 2009;131(10):104901.
  • Shao Q, Mi L, Han X, et al. Differences in cationic and anionic charge densities Dictate zwitterionic associations and stimuli responses. J Phys Chem B. 2014;118(24):6956–6962.
  • Ise N. Like likes like: counterion-mediated attraction in macroionic and colloidal interaction. Phys Chem Chem Phys. 2010;12(35):10279–10287.
  • Marcus Y, Hefter G. Ion pairing. Chem Rev. 2006;106(11):4585–4621.
  • Zhao Y, Bai T, Shao Q, et al. Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polym Chem. 2015;6(7):1066–1077.
  • Shao Q, Jiang S. Influence of charged groups on the properties of zwitterionic Moieties: a molecular simulation study. J Phys Chem B. 2014;118(27):7630–7637.
  • Ostuni E, Chapman RG, Liang MN, et al. Self-Assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17(20):6336–6343.
  • Chapman RG, Ostuni E, Takayama S, et al. Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc. 2000;122(34):8303–8304.
  • White A, Jiang S. Local and bulk hydration of zwitterionic Glycine and its Analogues through molecular simulations. J Phys Chem B. 2011;115(4):660–667.
  • Sundaram HS, Ella-Menye J-R, Brault ND, et al. Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation. Chem Sci. 2014;5(1):200–205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.