368
Views
3
CrossRef citations to date
0
Altmetric
Articles

Interrelationship between water film thicknesses and contact angles and a model for CO2 adhesion

, , &
Pages 868-875 | Received 17 Oct 2018, Accepted 08 Apr 2019, Published online: 23 Apr 2019

References

  • Bourg IC, Beckingham LE, DePaolo DJ. The nanoscale basis of CO2 trapping for geologic storage. Environ Sci Technol. 2015;49:10265–10284. doi: 10.1021/acs.est.5b03003
  • Michael K, Golab A, Shulakova V, et al. Geological storage of CO2 in saline aquifers – a review of the experience from existing storage operations. Int J Greenh Gas Control. 2010;4:659–667. doi: 10.1016/j.ijggc.2009.12.011
  • Vilarrasa V, Carrera J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc Natl Acad Sci USA. 2015;112:5938–5943. doi: 10.1073/pnas.1413284112
  • Gan W, Frohlich C. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc Natl Acad Sci USA. 2013;110:18786–18791. doi: 10.1073/pnas.1311316110
  • Iglauer S, Pentland CH, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour Res. 2015;51:729–774. doi: 10.1002/2014WR015553
  • Tokunaga TK, Wan JM. Capillary pressure and mineral wettablity influences on reservoir CO2 capacity. In: DePaolo DJ, Cole DR, Navrotsky A, editors. Geochemistry of geologic CO2 sequestration, Vol. 77. Chantilly: Mineralogical Soc Amer; 2013. p. 481–503.
  • Hamm LM, Bourg IC, Wallace AF, et al. Molecular Simulation of CO2- and CO3- Brine-Mineral Systems. In: DePaolo DJ, Cole DR, Navrotsky A, editors. Geochemistry of geologic CO2 sequestration. Chantilly: Mineralogical Soc Amer; 2013. p. 189–228.
  • Tokunaga TK. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs. Langmuir. 2012;28:8001–8009. doi: 10.1021/la2044587
  • Loring JS, Thompson CJ, Wang Z, et al. In Situ Infrared Spectroscopic study of forsterite carbonation in Wet supercritical CO2. Environ Sci Technol. 2011;45:6204–6210. doi: 10.1021/es201284e
  • Kim TW, Tokunaga TK, Bargar JR, et al. Brine film thicknesses on mica surfaces under geologic CO2 sequestration conditions and controlled capillary pressures. Water Resour Res. 2013;49:5071–5076. doi: 10.1002/wrcr.20404
  • Kim TW, Tokunaga TK, Shuman DB, et al. Thickness measurements of nanoscale brine films on silica surfaces under geologic CO2 sequestration conditions using synchrotron X-ray fluorescence. Water Resour Res. 2012;48:W09558.
  • Kerisit S, Weare JH, Felmy AR. Structure and dynamics of forsterite – CO2/H2O interfaces as a function of water content. Geochim Cosmochim Acta. 2012;84:137–151. doi: 10.1016/j.gca.2012.01.038
  • Bikkina P, Shaik I. Interfacial tension and contact angle data relevant to carbon sequestration. In: Agarwal R. K., editor. Carbon capture, utilization, and sequestration. London: InTech; 2018. p. 163–186.
  • Arif M, Al-Yaseri AZ, Barifcani A, et al. Impact of pressure and temperature on CO2 – brine–mica contact angles and CO2 – brine interfacial tension: implications for carbon geo-sequestration. J Colloid Interface Sci. 2016;462:208–215. doi: 10.1016/j.jcis.2015.09.076
  • Al-Yaseri AZ, Lebedev M, Barifcani A, et al. Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity. J Chem Thermodyn. 2016;93:416–423. doi: 10.1016/j.jct.2015.07.031
  • Seyyedi M, Sohrabi M, Farzaneh A. Investigation of rock wettability alteration by carbonated water through contact angle measurements. Energy Fuels. 2015;29:5544–5553. doi: 10.1021/acs.energyfuels.5b01069
  • Sarmadivaleh M, Al-Yaseri AZ, Iglauer S. Influence of temperature and pressure on quartz–water–CO2 contact angle and CO2 – water interfacial tension. J Colloid Interface Sci. 2015;441:59–64. doi: 10.1016/j.jcis.2014.11.010
  • Chen C, Wan J, Li W, et al. Water contact angles on quartz surfaces under supercritical CO2 sequestration conditions: experimental and molecular dynamics simulation studies. Int J Greenh Gas Control. 2015;42:655–665. doi: 10.1016/j.ijggc.2015.09.019
  • Al-Yaseri A, Sarmadivaleh M, Saeedi A, et al. N2+CO2+NaCl brine interfacial tensions and contact angles on quartz at CO2 storage site conditions in the Gippsland basin, Victoria/Australia. J Pet Sci Eng. 2015;129:58–62. doi: 10.1016/j.petrol.2015.01.026
  • Chen C, Zhang N, Li W, et al. Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions. Environ Sci Technol. 2015;49:14680–14687. doi: 10.1021/acs.est.5b03646
  • Zhang L, Kim Y, Jung H, et al. Effects of salinity-induced chemical reactions on biotite wettability changes under geologic CO2 sequestration conditions. Environ Sci Technol Lett. 2016;3(3):92–97. doi: 10.1021/acs.estlett.5b00359
  • Bikkina PK. Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. Int J Greenh Gas Control. 2011;5:1259–1271. doi: 10.1016/j.ijggc.2011.07.001
  • Wang SB, Tao ZY, Persily SM, et al. CO2 adhesion on hydrated mineral surfaces. Environ Sci Technol. 2013;47:11858–11865. doi: 10.1021/es402199e
  • Li D, Neumann AW. Thermodynamics of contact angle phenomena in the presence of a thin liquid film. Adv Colloid Interface Sci. 1991;36:125–151. doi: 10.1016/0001-8686(91)80030-N
  • Amirfazli A. On thermodynamics of thin films: the mechanical equilibrium condition and contact angles. J Adhesion. 2004;80:1003–1016. doi: 10.1080/00218460490509345
  • Wan JM, Kim Y, Tokunaga TK. Contact angle measurement ambiguity in supercritical CO2–water–mineral systems: mica as an example. Int J Greenh Gas Control. 2014;31:128–137. doi: 10.1016/j.ijggc.2014.09.029
  • Tenney CM, Cygan RT. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles. Environ Sci Technol. 2014;48:2035–2042. doi: 10.1021/es404075k
  • Liu S, Yang X, Qin Y. Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces. Chin Sci Bull. 2010;55:2252–2257. doi: 10.1007/s11434-010-3287-0
  • Emami FS, Puddu V, Berry RJ, et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem Mat. 2014;26:2647–2658. doi: 10.1021/cm500365c
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289
  • Vlcek L, Chialvo AA, Cole DR. Optimized unlike-pair interactions for water–carbon dioxide mixtures described by the SPC/E and EPM2 models. J Phys Chem B. 2011;115:8775–8784. doi: 10.1021/jp203241q
  • Harris JG, Yung KH. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 1995;99:12021–12024. doi: 10.1021/j100031a034
  • Beglov D, Roux B. Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys. 1994;100:9050–9063. doi: 10.1063/1.466711
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089–10092. doi: 10.1063/1.464397
  • Ryckaert JP. Special geometrical constraints in the molecular dynamics of chain molecules. Mol Phys. 1985;55:549–556. doi: 10.1080/00268978500101531
  • Procacci P, Marchi M. Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm. J Chem Phys. 1996;104:3003. doi: 10.1063/1.471067
  • Brunger AT. A system for X-ray crystallography and NMR. New Haven: Yale University Press; 1992.
  • Myint PC, Firoozabadi A. Thermodynamics of flat thin liquid films. Aiche J. 2015;61:3104–3115. doi: 10.1002/aic.14963
  • Dewan S, Carnevale V, Bankura A, et al. Structure of water at charged interfaces: a molecular dynamics study. Langmuir. 2014;30:8056–8065. doi: 10.1021/la5011055
  • Jung J-W, Wan J. Supercritical CO2 and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements. Energy Fuels. 2012;26:6053–6059. doi: 10.1021/ef300913t
  • Tripp CP, Combes JR. Chemical modification of metal oxide  surfaces in supercritical CO2: the interaction of supercritical CO2 with the adsorbed water layer and the surface hydroxyl groups of a silica surface. Langmuir. 1998;14:7350–7352. doi: 10.1021/la9805701
  • Vishnyakov A, Shen YY, Tomassone SM. Interactions of silica nanoparticles in supercritical carbon dioxide. J Chem Phys. 2008;129:174704. doi: 10.1063/1.2994714
  • McCool B, Tripp CP. Inaccessible hydroxyl groups on silica are accessible in supercritical CO2. J Phys Chem B. 2005;109:8914–8919. doi: 10.1021/jp050192q
  • Lamb RN, Furlong DN. Controlled wettability of quartz surfaces. J Chem Soc Faraday Trans I. 1982;78:61–73. doi: 10.1039/f19827800061
  • Jun YS, Giammar DE, Werth CJ. Impacts of geochemical reactions on geologic carbon sequestration. Environ Sci Technol. 2013;47:3–8. doi: 10.1021/es3027133
  • Altman SJ, Aminzadeh B, Balhoff MT, et al. Chemical and hydrodynamic mechanisms for long-term geological carbon storage. J Phys Chem C. 2014;118:15103–15113. doi: 10.1021/jp5006764
  • Zhang J, Li W, Yan Y, et al. Molecular insight into nanoscale water films dewetting on modified silica surfaces. Phys Chem Chem Phys. 2015;17:451–458. doi: 10.1039/C4CP04554H
  • Kosior D, Zawala J, Niecikowska A, et al. Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids. Colloid Surf A Physicochem Eng Asp. 2015;470:333–341. doi: 10.1016/j.colsurfa.2014.11.043
  • Nikolov A, Wasan D. Wetting–dewetting films: The role of structural forces. Adv Colloid Interface Sci. 2014;206:207–221. doi: 10.1016/j.cis.2013.08.005
  • Chiquet P, Broseta D, Thibeau S. Wettability alteration of Caprock minerals by carbon dioxide. Geofluids. 2007;7:112–122. doi: 10.1111/j.1468-8123.2007.00168.x
  • Zawala J, Kosior D, Malysa K. Formation and influence of the dynamic adsorption layer on kinetics of the rising bubble collisions with solution/gas and solution/solid interfaces. Adv Colloid Interface Sci. 2015;222:765–778. doi: 10.1016/j.cis.2014.07.013
  • Koishi T, Yasuoka K, Fujikawa S, et al. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel States: a molecular dynamics simulation study. Acs Nano. 2011;5:6834–6842. doi: 10.1021/nn2005393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.