256
Views
2
CrossRef citations to date
0
Altmetric
Articles

Atomistic modelling of interface structure and deformation mechanisms in the Al/GaN multilayer under compression

, &
Pages 921-926 | Received 15 Feb 2019, Accepted 16 Apr 2019, Published online: 02 May 2019

References

  • Xiang H, Li H, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation. Acta Mater. 2017;138:131–139. doi: 10.1016/j.actamat.2017.06.045
  • Zhao ZM, Jiang RL, Chen P, et al. Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN. Appl Phys Lett. 2001;79:218–220. doi: 10.1063/1.1385189
  • Zhou XW, Jones RE, Duda JC, et al. Molecular dynamics studies of material property effects on thermal boundary conductance. Phys Chem Chem Phys: PCCP. 2013;15:11078–11087. doi: 10.1039/c3cp51131f
  • Zhou XW, Jones RE, Hopkins PE, et al. Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics. Phys Chem Chem Phys: PCCP. 2014;16:9403–9410. doi: 10.1039/C4CP00261J
  • Yang B, Peng X, Huang C, et al. Strengthening and toughening by partial slip in nanotwinned diamond. ACS Appl Mater Interfaces. 2018; DOI:10.1021/acsami.8b13763
  • Kioseogiou J, Kalesaki E, Lymperakis L, et al. Polar AlN/GaN interfaces: structures and energetics. Phys Status Solidi A – Appl Mater Sci. 2009;206:1892–1897. doi: 10.1002/pssa.200881436
  • Xiang H, Li H, Fu T, et al. Shock-induced stacking fault pyramids in Ni/Al multilayers. Appl Surf Sci. 2018;427:219–225. doi: 10.1016/j.apsusc.2017.07.268
  • Huang C, Peng X, Fu T, et al. Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Materials Science and Engineering: A. 2017;700:609–616. doi: 10.1016/j.msea.2017.06.048
  • Fu T, Peng X, Huang C, et al. In-plane anisotropy and twin boundary effects in vanadium nitride under nanoindentation. Sci Rep. 2017;7:4768. doi: 10.1038/s41598-017-05062-0
  • Tao F, Peng X, Zhao Y, et al. MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Applied Physics A. 2016;122(2):67. doi: 10.1007/s00339-015-9592-3
  • Tao F, Peng X, Chao F, et al. MD simulation of growth of Pd on Cu (1 1 1) and Cu on Pd (1 1 1) substrates. Appl Surf Sci. 2015;356:651–658. doi: 10.1016/j.apsusc.2015.08.012
  • Lotfian S, Molina-Aldareguia JM, Yazzie KE, et al. High-temperature nanoindentation behavior of Al/SiC multilayers. Philos Mag Lett. 2012;92:362–367. doi: 10.1080/09500839.2012.674220
  • Bhattacharyya D, Mara NA, Dickerson P, et al. Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 2011;59:3804–3816. doi: 10.1016/j.actamat.2011.02.036
  • Li N, Yadav SK, Wang J, et al. Growth and stress-induced transformation of Zinc blende AlN layers in Al-AlN-TiN multilayers. Sci Rep. 2015;5:18554. doi: 10.1038/srep18554
  • Pilania G, Thijsse BJ, Hoagland RG, et al. Revisiting the Al/Al(2)O(3) interface: coherent interfaces and misfit accommodation. Sci Rep. 2014;4:4485. doi: 10.1038/srep04485
  • Zhang JY, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater Sci and Eng: A. 2012;545:118–122. doi: 10.1016/j.msea.2012.03.009
  • Wang J, Zhou Q, Shao S, et al. Strength and plasticity of nanolaminated materials. Mater Res Lett. 2016;5:1–19. doi: 10.1080/21663831.2016.1225321
  • Meraj M, Deng C, Pal S. Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations. J Appl Phys. 2018;123:044306. doi: 10.1063/1.5012960
  • Snehanshu P, Srishti M, Md M, et al. On the comparison of interrupted and continuous creep behaviour of Nanocrystalline Copper: A molecular dynamics Approach. Mater Lett. 2018;229:256–260. doi: 10.1016/j.matlet.2018.07.032
  • Yang B, Peng X, Xiang H, et al. Generalized stacking fault energies and ideal strengths of MC systems (M = Ti, Zr. Hf) doped with Si/Al using first principles calculations. J Alloy Compd. 2018;739:431–438. doi: 10.1016/j.jallcom.2017.12.240
  • Salehinia I, Shao S, Wang J, et al. Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater. 2015;86:331–340. doi: 10.1016/j.actamat.2014.12.026
  • Salehinia I, Wang J, Bahr DF, et al. Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plasticity. 2014;59:119–132. doi: 10.1016/j.ijplas.2014.03.010
  • Liang T, Ashton M, Choudhary K, et al. Properties of Ti/TiC interfaces from molecular dynamics simulations. J Phys Chem C. 2016;120(23):12530–12538. doi: 10.1021/acs.jpcc.6b02763
  • Yang W, Ayoub G, Salehinia I, et al. Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater. 2017;122:99–108. doi: 10.1016/j.actamat.2016.09.039
  • Yang W, Ayoub G, Salehinia I, et al. Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater. 2017;122:99–108. doi: 10.1016/j.actamat.2016.09.039
  • Pang L, Kim K. Improvement of ohmic contacts to n-type GaN using a Ti/Al multi-layered contact scheme. Mater Sci Semicond Process. 2015;29:90–94. doi: 10.1016/j.mssp.2013.10.011
  • Plimpton S. Fast parallel Algorithms for Short-Range molecular-dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Bere A, Serra A. On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries. Philos Mag. 2006;86:2159–2192. doi: 10.1080/14786430600640486
  • Chen C, Li H, Xiang H, et al. Molecular dynamics simulation on B3-GaN thin films under Nanoindentation. Nanomaterials. 2018;8(10):856. doi: 10.3390/nano8100856
  • Zhou XW, Wadley HNG, Johnson RA, et al. Atomic scale structure of sputtered metal multilayers. Acta Mater. 2001;49:4005–4015. doi: 10.1016/S1359-6454(01)00287-7
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Hoover WG. Constant-pressure equations of motion. Phys Rev A Gen Phys. 1986;34:2499–2500. doi: 10.1103/PhysRevA.34.2499
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci. 2009;18(1):015012. doi: 10.1088/0965-0393/18/1/015012
  • Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58:11085–11088. doi: 10.1103/PhysRevB.58.11085
  • Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si(001). Comput Phys Commun. 2016;205:13–21. doi: 10.1016/j.cpc.2016.04.001
  • Wang J, Hoagland RG, Hirth JP, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Mater. 2008;56:3109–3119. doi: 10.1016/j.actamat.2008.03.003
  • Wang J, Hoagland RG, Hirth JP, et al. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 2008;56:5685–5693. doi: 10.1016/j.actamat.2008.07.041
  • Zhang RF, Beyerlein IJ, Zheng SJ, et al. Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps. Acta Mater. 2016;113:194–205. doi: 10.1016/j.actamat.2016.05.015
  • Zhang RF, Germann TC, Liu XY, et al. Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 2014;79:74–83. doi: 10.1016/j.actamat.2014.07.016
  • Liu K, Zhang RF, Beyerlein IJ, et al. Cooperative dissociations of misfit dislocations at bimetal interfaces. APL Mater. 2016;4(11):111101. doi: 10.1063/1.4967207
  • Deng X, Chawla N, Chawla KK, et al. Mechanical Behavior of Multilayered nanoscale metal-ceramic Composites. Adv Eng Mater. 2010;7:1099–1108. doi: 10.1002/adem.200500161
  • Chu HJ, Wang J, Beyerlein IJ, et al. Dislocation models of interfacial shearing induced by an approaching lattice glide dislocation. Int J Plast. 2013;41:1–13. doi: 10.1016/j.ijplas.2012.08.005
  • Bieler TR, Crimp MA, Yang Y, et al. Strain Heterogeneity and Damage nucleation at grain Boundaries during Monotonic deformation in Commercial Purity Titanium. JOM. 2009;61:45–52. doi: 10.1007/s11837-009-0180-x
  • Derlet PM, Gumbsch P, Hoagland R, et al. Atomistic simulations of dislocations in confined Volumes. MRS Bullet. 2009;34:184–189. doi: 10.1557/mrs2009.50
  • Goel S, Kovalchenko A, Stukowski A, et al. Influence of microstructure on the cutting behaviour of silicon. Acta Mater. 2016;105:464–478. doi: 10.1016/j.actamat.2015.11.046
  • Thompson AP, Plimpton SJ, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys. 2009;131:154107. doi: 10.1063/1.3245303
  • Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng. 2012;20(8):085007. doi: 10.1088/0965-0393/20/8/085007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.