114
Views
1
CrossRef citations to date
0
Altmetric
Articles

Systematic Design-of-Experiments, factorial-design approaches for tuning simple empirical water models

&
Pages 119-130 | Received 01 Feb 2018, Accepted 01 Apr 2019, Published online: 17 Jun 2019

References

  • Holten V, Bertrand CE, Anisimov MA, et al. Thermodynamics of supercooled water. J Chem Phys. 2012;136:094507. doi: 10.1063/1.3690497
  • English NJ, Tse JS. Density fluctuations in liquid water. Phys Rev Lett. 2011;106:037801. doi: 10.1103/PhysRevLett.106.037801
  • Stillinger FH. Water revisited. Science. 1980;209:451. doi: 10.1126/science.209.4455.451
  • Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature. 1996;379:55. doi: 10.1038/379055a0
  • English NJ. Molecular dynamics simulations of liquid water using various long-range electrostatics techniques. Mol Phys. 2005;103:1945. doi: 10.1080/00268970500105003
  • Starr FW, Nielsen JK, Stanley HE. Fast and slow dynamics of hydrogen bonds in liquid water. Phys Rev Lett. 1999;82:2294. doi: 10.1103/PhysRevLett.82.2294
  • Laage D, Hynes JT. A molecular jump mechanism of water reorientation. Science. 2006;311:832. doi: 10.1126/science.1122154
  • Titantah JT, Karttunen M. Water dynamics: relation between hydrogen bond bifurcations, molecular jumps, local density & hydrophobicity. Sci Rep. 2013;3:2991. doi: 10.1038/srep02991
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford University Press; 2017.
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq. 2002;101:219–260. doi: 10.1016/S0167-7322(02)00094-6
  • Burnham CJ, English NJ. Study of clathrate hydrates via equilibrium molecular-dynamics simulation employing polarisable and non-polarisable, rigid and flexible water models. J Chem Phys. 2016;144:164503. doi: 10.1063/1.4947039
  • Reddy SK, Straight SC, Bajaj P, et al. On the accuracy of the MB-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J Chem Phys. 2016;145:194504. doi: 10.1063/1.4967719
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8:3192–3203. doi: 10.1039/C6SC05720A
  • Mason PE, Brady JW. ‘Tetrahedrality’ and the relationship between collective structure and radial distribution functions in liquid water. J Phys Chem B. 2007;111:5669–5679. doi: 10.1021/jp068581n
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J Phys Chem Lett. 2014;5(21):3863–3871. doi: 10.1021/jz501780a
  • Keen DA, McGreevy RL. Structural modelling of glasses using reverse Monte Carlo simulation. Nature. 1990;344:423–425. doi: 10.1038/344423a0
  • Soper AK. Empirical potential Monte Carlo simulation of fluid structure. Chem Phys. 1996;202:295–306. doi: 10.1016/0301-0104(95)00357-6
  • Soper AK. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys. 2000;258:121–137. doi: 10.1016/S0301-0104(00)00179-8
  • Soper AK. Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water. Mol Phys. 2001;99:1503–1516. doi: 10.1080/00268970110056889
  • Tobias DJ, Brooks III CL. Calculation of free energy surfaces using the methods of thermodynamic perturbation theory. Chem Phys Lett. 1987;142:472–476. doi: 10.1016/0009-2614(87)80646-2
  • Montgomery DC. Design and analysis of experiments. 7th ed. New York: Wiley; 2008.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. In intermolecular forces. In: B Pullman, editor. Dordrecht: Reidel; 1981. p. 331.
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918. doi: 10.1039/b517931a
  • Yeh I-C, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B. 2004;108:15873–15879. doi: 10.1021/jp0477147
  • English NJ. Structural properties of liquid water and Ice Ih from Ab-initio molecular dynamics with a non-local correlation functional. Energies. 2015;8:9383–9391. doi: 10.3390/en8099383
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577. doi: 10.1063/1.470117
  • Soper A. The radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure? ISRN Phys Chem. 2013: 1–67. DOI:10.1155/2013/279463
  • Soper AK. Disordered atom molecular potential for water parameterized against neutron diffraction data. Application to the structure of Ice Ih. J Phys Chem B. 2015;119:9244–9253. doi: 10.1021/jp509909w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.