636
Views
21
CrossRef citations to date
0
Altmetric
Articles

Computational discovery of nanoporous materials for energy- and environment-related applications

, &
Pages 1122-1147 | Received 17 Feb 2019, Accepted 13 May 2019, Published online: 11 Jun 2019

References

  • BP statistical review of world energy 2016 [Internet]. [cited 2019 May 9]. Available from: http://oilproduction.net/files/especial-BP/bp-statistical-review-of-world-energy-2016-full-report.pdf
  • Granite EJ, Pennline HW. Photochemical removal of mercury from flue gas. Ind Eng Chem Res. 2002;41:5470–5476.
  • D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chemie Int Ed. 2010;49:6058–6082.
  • US EPA O. Inventory of U.S. greenhouse gas emissions and sinks [Internet]. Available from: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
  • US EPA O. Criteria air pollutants [Internet]. Available from: https://www.epa.gov/criteria-air-pollutants
  • Chu S. Carbon capture and sequestration. Science. 2009;325:1599.
  • Lin L-C, Berger AH, Martin RL, et al. In silico screening of carbon-capture materials. Nat Mater. 2012;11:633–641.
  • Huck JM, Lin L-C, Berger AH, et al. Evaluating different classes of porous materials for carbon capture. Energy Environ Sci. 2014;7:4132–4146.
  • Kumar S, Cho JH, Moon IL. Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology – a review. Int J Greenh Gas Control. 2014;20:87–116.
  • Jensen AB, Webb C. Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol. 1995;17:2–10.
  • Lee K, Isley III WC, Dzubak AL, et al. Design of a metal–organic framework with enhanced back bonding for separation of N2 and CH4. J Am Chem Soc. 2013;136:698–704.
  • Kim J, Lin L-C, Martin RL, et al. Large-scale computational screening of zeolites for ethane/ethene separation. Langmuir. 2012;28:11914–11919.
  • Sun W, Lin L-C, Peng X, et al. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases. AIChE J. 2014;60:2314–2323.
  • Gutiérrez-Sevillano JJ, Martín-Calvo A, Dubbeldam D, et al. Adsorption of hydrogen sulphide on metal-organic frameworks. RSC Adv. 2013;3:14737–14749.
  • Kim J, Maiti A, Lin L-C, et al. New materials for methane capture from dilute and medium-concentration sources. Nat Commun. 2013;4:1694.
  • Braun E, Zurhelle AF, Thijssen W, et al. High-throughput computational screening of nanoporous adsorbents for CO2 capture from natural gas. Mol Syst Des Eng. 2016;1:175–188.
  • Bloch ED, Hudson MR, Mason JA, et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal–organic frameworks with exposed divalent metal cations. J Am Chem Soc. 2014;136:10752–10761.
  • Martín-Calvo A, Lahoz-Martín FD, Calero S. Understanding carbon monoxide capture using metal–organic frameworks. J Phys Chem C. 2012;116:6655–6663.
  • Kim J, Lee D. Marked inducing effects of metal oxide supports on the hydrothermal stability of zeolitic imidazolate framework (ZIF) membranes. J Mater Chem A. 2016;4:5205–5215.
  • Tagliabue M, Farrusseng D, Valencia S, et al. Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J. 2009;155:553–566.
  • Burchell T, Rogers M. Low pressure storage of natural gas for vehicular applications. SAE Trans. 2000;109:2242–2246.
  • Ma L, Lee JY, Li J, et al. 3D metal−organic frameworks based on elongated tetracarboxylate building blocks for hydrogen storage. Inorg Chem. 2008;47:3955–3957.
  • Wang X-S, Ma S, Rauch K, et al. Metal−organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater. 2008;20:3145–3152.
  • Getman RB, Bae Y-S, Wilmer CE, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem Rev. 2011;112:703–723.
  • Simon CM, Kim J, Gomez-Gualdron DA, et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ Sci. 2015;8:1190–1199.
  • Surwade SP, Smirnov SN, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene. Nat Nanotechnol. 2015;10:459–464.
  • Kim H, Yang S, Rao SR, et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science. 2017;356:430–434.
  • Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci Adv. 2016;2:e1500323.
  • Wang EN, Karnik R. Graphene cleans up water. Nat Nanotechnol. 2012;7:552.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12:3602–3608.
  • Liu Y, Chen X. High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys Chem Chem Phys. 2013;15:6817–6824.
  • Turgman-Cohen S, Araque JC, Hoek EM V, et al. Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites. Langmuir. 2013;29:12389–12399.
  • Jamali SH, Vlugt TJH, Lin L-C. Atomistic understanding of zeolite nanosheets for water desalination. J Phys Chem C. 2017;121:11273–11280.
  • Liou K-H, Kang D-Y, Lin L-C. Investigating the potential of single-walled aluminosilicate nanotubes in water desalination. ChemPhysChem. 2017;18:179–183.
  • Heiranian M, Farimani AB, Aluru NR. Water desalination with a single-layer MoS2 nanopore. Nat Commun. 2015;6:8616.
  • Li W, Yang Y, Weber JK, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano. 2016;10:1829–1835.
  • Lin L-C, Choi J, Grossman JC. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem Commun. 2015;51:14921–14924.
  • Kumar S, Singh N, Prasad R. Anhydrous ethanol: a renewable source of energy. Renew Sustain Energy Rev. 2010;14:1830–1844.
  • Janda A, Vlaisavljevich B, Lin L-C, et al. Adsorption thermodynamics and intrinsic activation parameters for monomolecular cracking of n-alkanes on Brønsted acid sites in zeolites. J Phys Chem C. 2015;119:10427–10438.
  • Janda A, Vlaisavljevich B, Smit B, et al. Effects of pore and cage topology on the thermodynamics of n-alkane adsorption at Brønsted protons in zeolites at high temperature. J Phys Chem C. 2017;121:1618–1638.
  • Yang CT, Janda A, Bell AT, et al. Atomistic investigations of the effects of Si/Al ratio and Al distribution on the adsorption selectivity of n-alkanes in Brønsted-acid zeolites. J Phys Chem C. 2018;122:9397–9410.
  • Van der Mynsbrugge J, Janda A, Lin L, et al. Understanding Brønsted-acid catalyzed monomolecular reactions of alkanes in zeolite pores by combining insights from experiment and theory. ChemPhysChem. 2018;19:341–358.
  • Parulkar A, Joshi R, Deshpande N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol. Appl Catal A Gen. 2018;566:25–32.
  • Deshpande N, Parulkar A, Joshi R, et al. Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: regioselectivity and mechanism. J Catal. 2019;370:46–54.
  • Database of zeolite structures [Internet]. [cited 2019 May 9]. Available from: http://www.iza-structure.org/databases/
  • Deem MW, Pophale R, Cheeseman PA, et al. Computational discovery of new zeolite-like materials. J Phys Chem C. 2009;113:21353–21360.
  • Pophale R, Cheeseman PA, Deem MW. A database of new zeolite-like materials. Phys Chem Chem Phys. 2011;13:12407–12412.
  • Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378:703.
  • Martin RL, Lin L-C, Jariwala K, et al. Mail-order metal–organic frameworks (MOFs): designing isoreticular MOF-5 analogues comprising commercially available organic molecules. J Phys Chem C. 2013;117:12159–12167.
  • Wilmer CE, Leaf M, Lee CY, et al. Large-scale screening of hypothetical metal–organic frameworks. Nat Chem. 2012;4:83.
  • Lee K, Howe JD, Lin L-C, et al. Small-molecule adsorption in open-site metal–organic frameworks: a systematic density functional theory study for rational design. Chem Mater. 2015;27:668–678.
  • Bae Y-S, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chemie Int Ed 2011;50:11586–11596.
  • Kim J, Martin RL, Rübel O, et al. High-throughput characterization of porous materials using graphics processing units. J Chem Theory Comput. 2012;8:1684–1693.
  • Kim J, Smit B. Efficient Monte Carlo simulations of gas molecules inside porous materials. J Chem Theory Comput. 2012;8:2336–2343.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • Breiman L. Random forests. Mach Learn. 2001;45:5–32.
  • Fernandez M, Woo TK, Wilmer CE, et al. Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks. J Phys Chem C. 2013;117:7681–7689.
  • Wilmer CE, Farha OK, Bae YS, et al. Structure-property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci. 2012;5:9849–9856.
  • Yazaydın AÖ, Snurr RQ, Park T-H, et al. Screening of metal−organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc. 2009;131:18198–18199.
  • Sridhar S, Smitha B, Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes – a review. Sep Purif Rev. 2007;36:113–174.
  • Iarikov DD, Oyama ST. Review of CO2/CH4 separation membranes. Membr Sci Technol. 2011;14:91–115.
  • Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.
  • Kim J, Abouelnasr M, Lin L-C, et al. Large-scale screening of zeolite structures for CO2 membrane separations. J Am Chem Soc. 2013;135:7545–7552.
  • Haldoupis E, Nair S, Sholl DS. Pore size analysis of >250 000 hypothetical zeolites. Phys Chem Chem Phys. 2011;13:5053–5060.
  • First EL, Gounaris CE, Wei J, et al. Computational characterization of zeolite porous networks: an automated approach. Phys Chem Chem Phys. 2011;13:17339–17358.
  • Martin RL, Smit B, Haranczyk M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J Chem Inf Model. 2011;52:308–318.
  • Krishna R, van Baten JM. In silico screening of metal–organic frameworks in separation applications. Phys Chem Chem Phys. 2011;13:10593–10616.
  • Chmelik C, van Baten J, Krishna R. Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals. J Memb Sci. 2012;397:87–91.
  • Martin RL, Willems TF, Lin L-C, et al. Similarity-driven discovery of zeolite materials for adsorption-based separations. ChemPhysChem. 2012;13:3595–3597.
  • Kim J, Lin L-C, Swisher JA, et al. Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J Am Chem Soc. 2012;134:18940–18943.
  • Larose DT, Larose CD. Discovering knowledge in data: an introduction to data mining. 2nd ed. New Jersey (NJ): Wiley; 2014.
  • Anderson R, Rodgers J, Argueta E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chem Mater. 2018;30:6325–6337.
  • Fernandez M, Boyd PG, Daff TD, et al. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. J Phys Chem Lett. 2014;5:3056–3060.
  • Liu G, Jin W, Xu N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew Chemie Int Ed. 2016;55:13384–13397.
  • Khawaji AD, Kutubkhanah IK, Wie J-M. Advances in seawater desalination technologies. Desalination. 2008;221:47–69.
  • Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature. 2008;452:301.
  • Eliasson J. The rising pressure of global water shortages. Nat News. 2015;517:6.
  • Charting our water future–2030 water resources group–world bank group [Internet]. [cited 2019 May 9]. Available from: https://www.2030wrg.org/charting-our-water-future/
  • Lee KP, Arnot TC, Mattia D. A review of reverse osmosis membrane materials for desalination – development to date and future potential. J Memb Sci. 2011;370:1–22.
  • Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater. 2016;1:16018.
  • Cohen-Tanugi D, McGovern RK, Dave SH, et al. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ Sci. 2014;7:1134–1141.
  • Zhu F, Tajkhorshid E, Schulten K. Theory and simulation of water permeation in aquaporin-1. Biophys J. 2004;86:50–57.
  • Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B. 2008;112:1427–1434.
  • Lin L-C, Grossman JC. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat Commun. 2015;6:8335.
  • Kou J, Zhou X, Lu H, et al. Graphyne as the membrane for water desalination. Nanoscale. 2014;6:1865–1870.
  • Zhu C, Li H, Zeng XC, et al. Quantized water transport: ideal desalination through graphyne-4 membrane. Sci Rep. 2013;3:3163.
  • Raju M, Govindaraju PB, van Duin ACT, et al. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination. Nanoscale. 2018;10:3969–3980.
  • Lehtinen O, Kotakoski J, Krasheninnikov A V, et al. Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys Rev B. 2010;81:153401.
  • Fischbein MD, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett. 2008;93:113107.
  • Koenig SP, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene. Nat Nanotechnol. 2012;7:728–732.
  • Kim BH, Kim JY, Jeong SJ, et al. Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano. 2010;4:5464–5470.
  • Kumar P V, Bardhan NM, Tongay S, et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem. 2014;6:151.
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.
  • Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574.
  • Cohen-Tanugi D, Lin L-C, Grossman JC. Multilayer nanoporous graphene membranes for water desalination. Nano Lett. 2016;16:1027–1033.
  • Cote AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science. 2005;310:1166–1170.
  • Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42:548–568.
  • Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chemie Int Ed 2008;47:3450–3453.
  • Pendergast MM, Hoek EM V. A review of water treatment membrane nanotechnologies. Energy Environ Sci. 2011;4:1946–1971.
  • Nakao S. Determination of pore size and pore size distribution: 3. filtration membranes. J Memb Sci. 1994;96:131–165.
  • Lyu Q, Sun S, Li C, et al. Rational design of two-dimensional hydrocarbon polymer as ultrathin-film nanoporous membranes for water desalination. ACS Appl Mater Interfaces. 2018;10:18778–18786.
  • Bieri M, Treier M, Cai J, et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun. 2009;(45):6919–6921.
  • Schrier J. Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl Mater Interfaces. 2012;4:3745–3752.
  • Brockway AM, Schrier J. Noble gas separation using PG-ESX (X=1, 2, 3) nanoporous two-dimensional polymers. J Phys Chem C 2012;117:393–402.
  • Varoon K, Zhang X, Elyassi B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science. 2011;334:72–75.
  • Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes–a review and comparison with MOFs. Chem Soc Rev. 2015;44:7128–7154.
  • Roth WJ, Nachtigall P, Morris RE, et al. Two-dimensional zeolites: current status and perspectives. Chem Rev. 2014;114:4807–4837.
  • Witman M, Ling S, Boyd P, et al. Cutting materials in half: a graph theory approach for generating crystal surfaces and its prediction of 2D zeolites. ACS Cent Sci. 2018;4:235–245.
  • Knio O, Medford AJ, Nair S, et al. A database of computation-ready 2D zeolitic slabs. Chem Mater. 2019;31:353–364.
  • Kazemimoghadam M. New nanopore zeolite membranes for water treatment. Desalination. 2010;251:176–180.
  • Khajavi S, Jansen JC, Kapteijn F. Production of ultra pure water by desalination of seawater using a hydroxy sodalite membrane. J Memb Sci. 2010;356:52–57.
  • Zhu B, Kim JH, Na Y-H, et al. Temperature and pressure effects of desalination using a MFI-type zeolite membrane. Membranes. 2013;3:155–168.
  • Garofalo A, Donato L, Drioli E, et al. Supported MFI zeolite membranes by cross flow filtration for water treatment. Sep Purif Technol. 2014;137:28–35.
  • Zhu B, Hong Z, Milne N, et al. Desalination of seawater ion complexes by MFI-type zeolite membranes: temperature and long term stability. J Memb Sci. 2014;453:126–135.
  • Zhu B, Myat DT, Shin J-W, et al. Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J Memb Sci. 2015;475:167–174.
  • Zou C, Lin L-C. Exploring the potential and design of zeolite nanosheets as pervaporation membranes for ethanol extraction. Chem Commun. 2018;54:13200–13203.
  • Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001;414:188.
  • Beu TA. Simulation of the flow of aqueous solutions through carbon nanotubes. Comput Phys Commun. 2011;182:2004–2008.
  • Kang D-Y, Zang J, Jones CW, et al. Single-walled aluminosilicate nanotubes with organic-modified interiors. J Phys Chem C. 2011;115:7676–7685.
  • Kang D-Y, Brunelli NA, Yucelen GI, et al. Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nat Commun. 2014;5:3342.
  • Lim JR, Yang CT, Kim J, et al. Transferability of CO2 force fields for prediction of adsorption properties in all-silica zeolites. J Phys Chem C. 2018;122:10892–10903.
  • Fang H, Kamakoti P, Zang J, et al. Prediction of CO2 adsorption properties in zeolites using force fields derived from periodic dispersion-corrected DFT calculations. J Phys Chem C. 2012;116:10692–10701.
  • García-Pérez E, Parra JB, Ania CO, et al. A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption. 2007;13:469–476.
  • Cygan RT, Liang J-J, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108:1255–1266.
  • Vujić B, Lyubartsev AP. Transferable force-field for modelling of CO2, N2, O2 and Ar in all silica and Na+ exchanged zeolites. Model Simul Mater Sci Eng. 2016;24:45002.
  • Bai P, Tsapatsis M, Siepmann JI. TraPPE-zeo: Transferable potentials for phase equilibria force field for all-silica zeolites. J Phys Chem C. 2013;117:24375–24387.
  • Garcia-Sanchez A, Ania CO, Parra JB, et al. Transferable force field for carbon dioxide adsorption in zeolites. J Phys Chem C. 2009;113:8814–8820.
  • Massey HSW, Buckingham RA. Long range forces between hydrogen molecules. Proc R Irish Acad Sect A Math Phys Sci. 1938/1939;45:31–45.
  • Morse PM. Diatomic molecules according to the wave mechanics. II. vibrational levels. Phys Rev. 1929;34:57.
  • Jorgensen WL, Tirado-Rives J. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110:1657–1666.
  • Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001;47:1676–1682.
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J Phys Chem B 1998;102:2569–2577.
  • Cho EH, Lin L-C. Systematic molecular model development with reliable charge distributions for gaseous adsorption in nanoporous materials. J Mater Chem A. 2018;6:16029–16042.
  • Campaná C, Mussard B, Woo TK. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J Chem Theory Comput. 2009;5:2866–2878.
  • Maghsoudi H, Soltanieh M, Bozorgzadeh H, et al. Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption. 2013;19:1045–1053.
  • Andreani C, Merlo V, Ricci MA, et al. Neutron diffraction study of the partial pair correlation functions of liquid hydrogen sulphide. Mol Phys. 1991;73:407–415.
  • NIST chemistry webbook [Internet]. [cited 2019 May 9]. Available from: https://webbook.nist.gov/chemistry/
  • Manz TA, Sholl DS. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J Chem Theory Comput. 2010;6:2455–2468.
  • Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11:361–373.
  • Chung YG, Camp J, Haranczyk M, et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater. 2014;26:6185–6192.
  • Nazarian D, Camp JS, Sholl DS. A comprehensive set of high-quality point charges for simulations of metal–organic frameworks. Chem Mater. 2016;28:785–793.
  • Wilmer CE, Kim KC, Snurr RQ. An extended charge equilibration method. J Phys Chem Lett. 2012;3:2506–2511.
  • Ramachandran S, Lenz TG, Skiff WM, et al. Toward an understanding of zeolite Y as a cracking catalyst with the use of periodic charge equilibration. J Phys Chem. 1996;100:5898–5907.
  • Xu Q, Zhong C. A general approach for estimating framework charges in metal–organic frameworks. J Phys Chem C. 2010;114:5035–5042.
  • Li W, Rao Z, Chung YG, et al. The role of partial atomic charge assignment methods on the computational screening of metal–organic frameworks for CO2 capture under humid conditions. Chem Select. 2017;2:9458–9465.
  • Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23:12154–12158.
  • Rappé AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035.
  • Mayo SL, Olafson BD, Goddard IIIWA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909.
  • McDaniel JG, Li S, Tylianakis E, et al. Evaluation of force field performance for high-throughput screening of gas uptake in metal–organic frameworks. J Phys Chem C. 2015;119:3143–3152.
  • Fairen-Jimenez D, Lozano-Casal P, Duren T. Assessing generic force fields to describe adsorption on metal-organic frameworks. Characterisation of Porous Solids VIII: Proceedings of 8th International Symposium Characterisation of Porous Solids; 2009; Vol. 310. p. 80–87.
  • Pérez-Pellitero J, Amrouche H, Siperstein FR, et al. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chem Eur J 2010;16:1560–1571.
  • Fischer M, Gomes JRB, Fröba M, et al. Modeling adsorption in metal–organic frameworks with open metal sites: propane/propylene separations. Langmuir. 2012;28:8537–8549.
  • Fischer M, Kuchta B, Firlej L, et al. Accurate prediction of hydrogen adsorption in metal−organic frameworks with unsaturated metal sites via a combined density-functional theory and molecular mechanics approach. J Phys Chem C. 2010;114:19116–19126.
  • Zang J, Nair S, Sholl DS. Prediction of water adsorption in copper-based metal–organic frameworks using force fields derived from dispersion-corrected DFT calculations. J Phys Chem C. 2013;117:7519–7525.
  • Dzubak AL, Lin L-C, Kim J, et al. Ab initio carbon capture in open-site metal–organic frameworks. Nat Chem. 2012;4:810.
  • Grajciar L, Bludský O, Nachtigall P. Water adsorption on coordinatively unsaturated sites in CuBTC MOF. J Phys Chem Lett. 2010;1:3354–3359.
  • Fischer M, Bell RG. Influence of zeolite topology on CO2/N2 separation behavior: force-field simulations using a DFT-derived charge model. J Phys Chem C. 2012;116:26449–26463.
  • Liu B, Smit B, Rey F, et al. A new united atom force field for adsorption of alkenes in zeolites. J Phys Chem C. 2008;112:2492–2498.
  • Jaramillo E, Chandross M. Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J Phys Chem B 2004;108:20155–20159.
  • Garcia-Perez E, Dubbeldam D, Maesen TLM, et al. Influence of cation Na/Ca ratio on adsorption in LTA 5A: a systematic molecular simulation study of alkane chain length. J Phys Chem B. 2006;110:23968–23976.
  • Dubbeldam D, Calero S, Vlugt TJH, et al. Force field parametrization through fitting on inflection points in isotherms. Phys Rev Lett. 2004;93:88302.
  • Dubbeldam D, Calero S, Vlugt TJH, et al. United atom force field for alkanes in nanoporous materials. J Phys Chem B. 2004;108:12301–12313.
  • Calero S, Dubbeldam D, Krishna R, et al. Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. J Am Chem Soc. 2004;126:11377–11386.
  • Akten ED, Siriwardane R, Sholl DS. Monte Carlo simulation of single-and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy & Fuels. 2003;17:977–983.
  • Jung DH, Kim D, Lee TB, et al. Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal–organic frameworks. J Phys Chem B. 2006;110:22987–22990.
  • Wang S. Comparative molecular simulation study of methane adsorption in metal–organic frameworks. Energy & Fuels. 2007;21:953–956.
  • Li W, Zhang J, Guo H, et al. Adsorption of gases in microporous organic molecular crystal, a multiscale computational investigation. J Phys Chem C. 2011;115:4935–4942.
  • Yang Q, Zhong C. Molecular simulation of adsorption and diffusion of hydrogen in metal–organic frameworks. J Phys Chem B. 2005;109:11862–11864.
  • Yang Q, Zhong C. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal–organic frameworks. J Phys Chem B. 2006;110:17776–17783.
  • McDaniel JG, Yu K, Schmidt JR. Ab initio, physically motivated force fields for CO2 adsorption in zeolitic imidazolate frameworks. J Phys Chem C. 2012;116:1892–1903.
  • Dietzel PDC, Blom R, Fjellvåg H. Base-induced formation of two magnesium metal–organic framework compounds with a bifunctional tetratopic ligand. Eur J Inorg Chem. 2008;2008:3624–3632.
  • Haldoupis E, Borycz J, Shi H, et al. Ab initio derived force fields for predicting CO2 adsorption and accessibility of metal sites in the metal–organic frameworks M-MOF-74 (M=Mn, Co, Ni, Cu). J Phys Chem C. 2015;119:16058–16071.
  • Sholl DS, Lively RP. Defects in metal-organic frameworks: challenge or opportunity? J Phys Chem Lett. 2015;6:3437–3444.
  • Ghosh P, Colón YJ, Snurr RQ. Water adsorption in UiO-66: the importance of defects. Chem Commun. 2014;50:11329–11331.
  • Choi J, Lin L-C, Grossman JC. Role of structural defects in the water adsorption properties of MOF-801. J Phys Chem C. 2018;122:5545–5552.
  • Chen Y-R, Liou K-H, Kang D-Y, et al. Investigation of the water adsorption properties and structural stability of MIL-100(Fe) with different anions. Langmuir. 2018;34:4180–4187.
  • Foresman JB, Frisch A. Exploring chemistry with electronic structure methods. 2nd ed. Pittsburgh (PA): Gaussian; 1996.
  • Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004;25:1463–1473.
  • Lee K, Murray ÉD, Kong L, et al. Higher-accuracy van der Waals density functional. Phys Rev B. 2010;82:081101.
  • Lin L-C, Lee K, Gagliardi L, et al. Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal–organic frameworks. J Chem Theory Comput. 2014;10:1477–1488.
  • Mercado R, Vlaisavljevich B, Lin L-C, et al. Force field development from periodic density functional theory calculations for gas separation applications using metal–organic frameworks. J Phys Chem C. 2016;120:12590–12604.
  • Fang H, Awati R, Boulfelfel S, et al. First-principles-derived force fields for CH4 adsorption and diffusion in siliceous zeolites. J Phys Chem C. 2018;122:12880–12891.
  • Pham T, Forrest KA, Hogan A, et al. Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations. J Mater Chem A. 2014;2:2088–2100.
  • Belof JL, Stern AC, Eddaoudi M, et al. On the mechanism of hydrogen storage in a metal–organic framework material. J Am Chem Soc. 2007;129:15202–15210.
  • Pham T, Forrest KA, Banerjee R, et al. Understanding the H2 sorption trends in the M-MOF-74 series (M=Mg, Ni, Co, Zn). J Phys Chem C. 2014;119:1078–1090.
  • Forrest KA, Pham T, McLaughlin K, et al. Simulation of the mechanism of gas sorption in a metal–organic framework with open metal sites: molecular hydrogen in PCN-61. J Phys Chem C. 2012;116:15538–15549.
  • Belof JL, Stern AC, Space B. An accurate and transferable intermolecular diatomic hydrogen potential for condensed phase simulation. J Chem Theory Comput. 2008;4:1332–1337.
  • Becker TM, Dubbeldam D, Lin L-C, et al. Investigating polarization effects of CO2 adsorption in MgMOF-74. J Comput Sci. 2016;15:86–94.
  • Becker TM, Heinen J, Dubbeldam D, et al. Polarizable force fields for CO2 and CH4 adsorption in M-MOF-74. J Phys Chem C. 2017;121:4659–4673.
  • Becker TM, Luna-Triguero A, Vicent-Luna JM, et al. Potential of polarizable force fields for predicting the separation performance of small hydrocarbons in M-MOF-74. Phys Chem Chem Phys. 2018;20:28848–28859.
  • Becker TM, Lin L-C, Dubbeldam D, et al. Polarizable force field for CO2 in M-MOF-74 derived from quantum mechanics. J Phys Chem C. 2018;122:24488–24498.
  • Smit B, Maesen TLM. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem Rev. 2008;108:4125–4184.
  • Fairen-Jimenez D, Moggach SA, Wharmby MT, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc. 2011;133:8900–8902.
  • Yang C-T, Kshirsagar AR, Eddin AC, et al. Tuning gas adsorption by metal node blocking in photoresponsive metal–organic frameworks. Chem Eur J. 2018;24:15167–15172.
  • Park J, Yuan D, Pham KT, et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J Am Chem Soc. 2012;134:99–102.
  • Ohio supercomputer center [Internet]. [cited 2019 May 9]. Available from: http://osc.edu/ark:/19495/f5s1ph73
  • Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11:121–127.
  • Swisher JA, Lin L-C, Kim J, et al. Evaluating mixture adsorption models using molecular simulation. AIChE J. 2013;59:3054–3064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.