600
Views
16
CrossRef citations to date
0
Altmetric
Articles

Phase space and collective variable based simulation methods for studies of rare events

, ORCID Icon & ORCID Icon
Pages 1273-1284 | Received 20 Mar 2019, Accepted 08 Jun 2019, Published online: 28 Jun 2019

References

  • Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3(2):107–115.
  • Wigner E. The transition state method. Trans Faraday Soc. 1938;34(29):678.
  • Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J Chem Phys. 1978;68(6):2959–2970.
  • Truhlar DG, Garrett BC. Variational transition state theory. Annu Rev Phys Chem. 1984;35(1):159–189.
  • Weinan E, Vanden-Eijnden E. Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem. 2010;61(1):391–420.
  • Dellago C, Bolhuis PG, Csajka FS, et al. Transition path sampling and the calculation of rate constants. J Chem Phys. 1998;108(5):1964–1977.
  • Bolhuis PG, Chandler D, Dellago C, et al. Transition path sampling: throwing ropes over rough. Annu Rev Phys Chem. 2002;53(1):291–318.
  • Dellago C, Bolhuis PG. Transition path sampling simulations of biological systems. In: Markus Reiher, editor. Atomistic approaches in modern biology. Berlin: Springer; 2006. p. 291–317.
  • Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol. 2002;9(9):646–652.
  • Torrie G, Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–199.
  • Kumar S, Rosenberg JM, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
  • Souaille M, Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun. 2001;135(1):40–57.
  • Rosta E, Hummer G. Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J Chem Theory Comput. 2015;11(1):276–285.
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA. 2002;99(20):12562–12566.
  • Rosso L, Mináry P, Zhu Z, et al. On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Chem Phys. 2002;116(11):4389–4402.
  • Rosso L, Abrams JB, Tuckerman ME. Mapping the backbone dihedral free-energy surfaces in small peptides in solution using adiabatic free-energy dynamics. J Phys Chem B. 2005;109(9):4162–4167.
  • Maragliano L, Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426(1–3):168–175.
  • Rohrdanz MA, Zheng W, Clementi C. Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Annu Rev Phys Chem. 2013;64(1):295–316.
  • Peters B. Recent advances in transition path sampling: accurate reaction coordinates, likelihood maximisation and diffusive barrier-crossing dynamics. Mol Simul. 2010;36(15):1265–1281.
  • Peters B. Reaction coordinates and mechanistic hypothesis tests. Annu Rev Phys Chem. 2016;67(1):669–690.
  • Vashisth H, Skiniotis G, Brooks III CL. Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chem Rev. 2014;114(6):3353–3365.
  • Wales DJ. Exploring energy landscapes. Annu Rev Phys Chem. 2018;69(1):401–425.
  • Henkelman G. Atomistic simulations of activated processes in materials. Annu Rev Mater Res. 2017;47(1):199–216.
  • Zuckerman DM, Chong LT. Weighted ensemble simulation: review of methodology, applications, and software. Annu Rev Biophys. 2017;46(1):43–57.
  • Valsson O, Tiwary P, Parrinello M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem. 2016;67(1):159–184.
  • Allen RJ, Valeriani C, ten Wolde PR. Forward flux sampling for rare event simulations. J Phys Condens Matter. 2009;21(46):463102.
  • Noé F, Fischer S. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr Opin Struct Biol. 2008;18(2):154–162.
  • Meloni S, Ciccotti G. Free energies for rare events: temperature accelerated MD and MC. Eur Phys J Spec Top. 2015;224(12):2389–2407.
  • Chong LT, Saglam AS, Zuckerman DM. Path-sampling strategies for simulating rare events in biomolecular systems. Curr Opin Struct Biol. 2017;43:88–94.
  • Zinovjev K, Tuñn I. Reaction coordinates and transition states in enzymatic catalysis. Wiley Interdiscip Rev Comput Mol Sci. 2018;8(1):e1329.
  • Awasthi S, Nair NN. Exploring high-dimensional free energy landscapes of chemical reactions. Wiley Interdiscip Rev Comput Mol Sci. 2018;9(3):e1398.
  • West AMA, Elber R, Shalloway D. Extending molecular dynamics time scales with milestoning: example of complex kinetics in a solvated peptide. J Chem Phys. 2007;126(14):145104.
  • Pietrucci F. Strategies for the exploration of free energy landscapes: unity in diversity and challenges ahead. Rev Phys. 2017;2:32–45.
  • Dellago C, Bolhuis PG, Geissler PL. Transition path sampling. Adv Chem Phys. 2002;123:1–78.
  • Geissler PL, Dellago C, Chandler D. Kinetic pathways of ion pair dissociation in water. J Phys Chem B. 1999;103(18):3706–3710.
  • Hummer G. From transition paths to transition states and rate coefficients. J Chem Phys. 2004;120(2):516–523.
  • Best RB, Hummer G. Reaction coordinates and rates from transition paths. Proc Natl Acad Sci USA. 2005;102(19):6732–6737.
  • Dellago C, Bolhuis PG, Chandler D. On the calculation of reaction rate constants in the transition path ensemble. J Chem Phys. 1999;110(14):6617–6625.
  • van Erp TS, Moroni D, Bolhuis PG. A novel path sampling method for the calculation of rate constants. J Chem Phys. 2003;118(17):7762–7774.
  • van Erp TS, Bolhuis PG. Elaborating transition interface sampling methods. J Comput Phys. 2005;205(1):157–181.
  • Geissler PL, Dellago C, Chandler D. Chemical dynamics of the protonated water trimer analyzed by transition path sampling. Phys Chem Chem Phys. 1999;1(6):1317–1322.
  • Bolhuis PG, Dellago C, Chandler D. Reaction coordinates of biomolecular isomerization. Proc Natl Acad Sci USA. 2000;97(11):5877–5882.
  • Bolhuis PG. Transition-path sampling of β-hairpin folding. Proc Natl Acad Sci USA. 2003;100(21):12129–12134.
  • Juraszek J, Bolhuis PG. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc Natl Acad Sci USA. 2006;103(43):15859–15864.
  • Hagan MF, Dinner AR, Chandler D, et al. Atomistic understanding of kinetic pathways for single base-pair binding and unbinding in dna. Proc Natl Acad Sci USA. 2003;100(24):13922–13927.
  • Basner JE, Schwartz SD. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study. J Am Chem Soc. 2005;127(40):13822–13831.
  • Quaytman SL, Schwartz SD. Reaction coordinate of an enzymatic reaction revealed by transition path sampling. Proc Natl Acad Sci USA. 2007;104(30):12253–12258.
  • Paul S, Paul TK, Taraphder S. Reaction coordinate, free energy, and rate of intramolecular proton transfer in human carbonic anhydrase II. J Phys Chem B. 2018;122(11):2851–2866.
  • Roy A, Taraphder S. Transition path sampling study of the conformational fluctuation of his-64 in human carbonic anhydrase II. J Phys Chem B. 2009;113(37):12555–12564.
  • Paul S, Taraphder S. Determination of the reaction coordinate for a key conformational fluctuation in human carbonic anhydrase II. J Phys Chem B. 2015;119(34):11403–11415.
  • Feig M. Is alanine dipeptide a good model for representing the torsional preferences of protein backbones? J Chem Theory Comput. 2008;4(9):1555–1564.
  • Silverman DN, Lindskog S. The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc Chem Res. 1988;21(1):30–36.
  • Maupin CM, Voth GA. Preferred orientations of his64 in human carbonic anhydrase II. Biochemistry. 2007;46(11):2938–2947.
  • Maupin CM, McKenna R, Silverman DN, et al. Elucidation of the proton transport mechanism in human carbonic anhydrase II. J Am Chem Soc. 2009;131(22):7598–7608.
  • Maupin CM, Castillo N, Taraphder S, et al. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. J Am Chem Soc. 2011;133(16):6223–6234.
  • Taraphder S, Maupin CM, Swanson JMJ, et al. Coupling protein dynamics with proton transport in human carbonic anhydrase II. J Phys Chem B. 2016;120(33):8389–8404.
  • Paul S, Paul TK, Taraphder S. Orthogonal order parameters to model the reaction coordinate of an enzyme catalyzed reaction. J Mol Graph Model. 2019;90:18–32.
  • Hénin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys. 2004;121(7):2904–2914.
  • Håkansson K, Carlsson M, Svensson L, et al. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992;227(4):1192–1204.
  • Bonomi M, Branduardi D, Bussi G, et al. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009;180(10):1961–1972.
  • Duda D, Tu C, Qian M, et al. Structural and kinetic analysis of the chemical rescue of the proton transfer function of carbonic anhydrase II. Biochemistry. 2001;40(6):1741–1748.
  • Zoi I, Suarez J, Antoniou D, et al. Modulating enzyme catalysis through mutations designed to alter rapid protein dynamics. J Am Chem Soc. 2016;138(10):3403–3409.
  • Saen-oon S, Quaytman-Machleder S, Schramm VL, et al. Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Proc Natl Acad Sci USA. 2008;105(43):16543–16548.
  • Antoniou D, Ge X, Schramm VL, et al. Mass modulation of protein dynamics associated with barrier crossing in purine nucleoside phosphorylase. J Phys Chem Lett. 2012;3(23):3538–3544.
  • Radhakrishnan R, Schlick T. Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β's closing. Proc Natl Acad Sci USA. 2004;101(16):5970–5975.
  • Peters B, Trout BL. Obtaining reaction coordinates by likelihood maximization. J Chem Phys. 2006;125(5):054108.
  • Peters B, Beckham GT, Trout BL. Extensions to the likelihood maximization approach for finding reaction coordinates. J Chem Phys. 2007;127(3):034109.
  • Peters B. Inertial likelihood maximization for reaction coordinates with high transmission coefficients. Chem Phys Lett. 2012;554:248–253.
  • Joswiak MN, Doherty MF, Peters B. Ion dissolution mechanism and kinetics at kink sites on NaCl surfaces. Proc Natl Acad Sci USA. 2018;115(4):656–661.
  • Xi L, Shah M, Trout BL. Hopping of water in a glassy polymer studied via transition path sampling and likelihood maximization. J Phys Chem B. 2013;117(13):3634–3647.
  • Leitold C, Dellago C. Folding mechanism of a polymer chain with short-range attractions. J Chem Phys. 2014;141(13):134901.
  • Lechner W, Dellago C, Bolhuis PG. Reaction coordinates for the crystal nucleation of colloidal suspensions extracted from the reweighted path ensemble. J Chem Phys. 2011;135(15):154110.
  • Knott BC, Haddad Momeni M, Crowley MF, et al. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc. 2014;136(1):321–329.
  • Patra S, Keshavamurthy S. Classical-quantum correspondence in a model for conformational dynamics: connecting phase space reactive islands with rare events sampling. Chem Phys Lett. 2015;634:1–10.
  • Patra S, Keshavamurthy S. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling. Phys Chem Chem Phys. 2018;20:4970–4981.
  • Müller K, Brown LD. Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor Chim Acta. 1979;53(1):75–93.
  • Mendoza C, Mancho AM. Hidden geometry of ocean flows. Phys Rev Lett. 2010;105(3):038501.
  • Fiorin G, Klein ML, Hénin J. Using collective variables to drive molecular dynamics simulations. Mol Phys. 2013;111(22–23):3345–3362.
  • Tuckerman ME. Statistical mechanics: theory and molecular simulation. 1st ed. Oxford: Oxford University Press; 2010.
  • Valsson O, Parrinello M. Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett. 2014;113:090601.
  • Tiwary P, Parrinello M. From metadynamics to dynamics. Phys Rev Lett. 2013;111(23):230602.
  • Salvalaglio M, Tiwary P, Parrinello M. Assessing the reliability of the dynamics reconstructed from metadynamics. J Chem Theory Comput. 2014;10(4):1420–1425.
  • Tiwary P, Limongelli V, Salvalaglio M, et al. Kinetics of protein–ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci USA. 2015;112(5):E386–E391.
  • Abrams JB, Tuckerman ME. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations. J Phys Chem B. 2008;112:15742.
  • Abrams CF, Vanden-Eijnden E. Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Proc Natl Acad Sci USA. 2010;107:4961–4966.
  • Vashisth H, Maragliano L, Abrams CF. Dfg-flip in the insulin receptor kinase is facilitated by a helical intermediate state of the activation loop. Biophys J. 2012;102:1979–1987.
  • Vashisth H, Brooks IIICL. Conformational sampling of maltose-transporter components in Cartesian collective variables is governed by the low-frequency normal modes. J Phys Chem Lett. 2012;3(22):3379–3384.
  • Vashisth H, Skiniotis G, Brooks III CL. Using enhanced sampling and structural restraints to refine atomic structures into low-resolution electron microscopy maps. Structure. 2012;20(9):1453–1462.
  • Vashisth H, Storaska AJ, Neubig RR, et al. Conformational dynamics of a regulator of G-protein signaling protein reveals a mechanism of allosteric inhibition by a small molecule. ACS Chem Biol. 2013;8(12):2778–2784.
  • Maragliano L, Cottone G, Ciccotti G, et al. Mapping the network of pathways of CO diffusion in myoglobin. J Am Chem Soc. 2010;132:1010–1017.
  • Lapelosa M, Abrams CF. A computational study of water and co migration sites and channels inside myoglobin. J Chem Theory Comput. 2013;9:1265–1271.
  • Tzanov AT, Cuendet MA, Tuckerman ME. How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study. J Phys Chem B. 2014;118:6539–6552.
  • Cortes-Ciriano I, Bouvier G, Nilges M, et al. Temperature accelerated molecular dynamics with soft-ratcheting criterion orients enhanced sampling by low-resolution information. J Chem Theory Comput. 2015;11:3446–3454.
  • Cuendet MA, Margul DT, Schneider E, et al. Endpoint-restricted adiabatic free energy dynamics approach for the exploration of biomolecular conformational equilibria. J Chem Phys. 2018;149:072316.
  • Abrams JB, Rosso L, Tuckerman ME. Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics. J Chem Phys. 2006;125:074115.
  • Cuendet MA, Tuckerman ME. Alchemical free energy differences in flexible molecules from thermodynamic integration or free energy perturbation combined with driven adiabatic dynamics. J Chem Theory Comput. 2012;8:3504–3512.
  • Chen M, Cuendet MA, Tuckerman ME. Heating and flooding: a unified approach for rapid generation of free energy surfaces. J Comput Phys. 2012;137(2):024102.
  • Kästner J. Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci. 2011;1(6):932–942.
  • Awasthi S, Kapil V, Nair NN. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics. J Comput Chem. 2016;37(16):1413–1424.
  • Lucid J, Meloni S, MacKernan D, et al. Probing the structures of hydrated nafion in different morphologies using temperature-accelerated molecular dynamics simulations. J Phys Chem C. 2013;117(2):774–782.
  • Piana S, Laio A. A bias-exchange approach to protein folding. J Phys Chem B. 2007;111(17):4553–4559.
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1–2):141–151.
  • Galvelis R, Sugita Y. Replica state exchange metadynamics for improving the convergence of free energy estimates. J Comput Chem. 2015;36(19):1446–1455.
  • Baftizadeh F, Cossio P, Pietrucci F, et al. Protein folding and ligand-enzyme binding from bias-exchange metadynamics simulations. Curr Phys Chem. 2012;2(1):79–91.
  • Pfaendtner J, Bonomi M. Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J Chem Theory Comput. 2015;11(11):5062–5067.
  • Prakash A, Fu CD, Bonomi M, et al. Biasing smarter, not harder, by partitioning collective variables into families in parallel bias metadynamics. J Chem Theory Comput. 2018;14(10):4985–4990.
  • Piana S, Laio A. Advillin folding takes place on a hypersurface of small dimensionality. Phys Rev Lett. 2008;101(20):208101.
  • Piana S, Laio A, Marinelli F, et al. Predicting the effect of a point mutation on a protein fold: the villin and advillin headpieces and their Pro62Ala mutants. J Mol Biol. 2008;375(2):460–470.
  • Todorova N, Marinelli F, Piana S, et al. Exploring the folding free energy landscape of insulin using bias exchange metadynamics. J Phys Chem B. 2009;113(11):3556–3564.
  • Pietrucci F, Laio A. A collective variable for the efficient exploration of protein beta-sheet structures: application to SH3 and GB1. J Chem Theory Comput. 2009;5(9):2197–2201.
  • Juraszek J, Bolhuis PG. (Un)folding mechanisms of the FBP28 WW domain in explicit solvent revealed by multiple rare event simulation methods. Biophys J. 2010;98:646–656.
  • Cossio P, Marinelli F, Laio A, et al. Optimizing the performance of bias-exchange metadynamics: folding a 48-residue lysm domain using a coarse-grained model. J Phys Chem B. 2010;114(9):3259–3265.
  • Rossetti G, Cossio P, Laio A, et al. Conformations of the huntingtin n-term in aqueous solution from atomistic simulations. FEBS Lett. 2011;585:3086–3089.
  • Granata D, Camilloni C, Vendruscolo M, et al. Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci USA. 2013;110:6817–6822.
  • Benetti F, Biarnes X, Attanasio F, et al. Structural determinants in prion protein folding and stability. J Mol Bol. 2014;426:3796–3810.
  • Pietrucci F, Marinelli F, Carloni P, et al. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. J Am Chem Soc. 2009;131:11811–11818.
  • Herbert C, Schieborr U, Saxena K, et al. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell. 2013;23:489–501.
  • Li Y, Lavey NP, Coker JA, et al. Consequences of depsipeptide substitution on the ClpP activation activity of antibacterial acyldepsipeptides. ACS Med Chem Lett. 2017;8:1171–1176.
  • Duan M, Liu N, Zhou W, et al. Structural diversity of ligand-binding androgen receptors revealed by microsecond long molecular dynamics simulations and enhanced sampling. J Chem Theory Comput. 2016;12:4611–4619.
  • Paloncýová M, Navrátilová V, Berka K, et al. Role of enzyme flexibility in ligand access and egress to active site: bias-exchange metadynamics study of 1,3,7-trimethyluric acid in cytochrome P450 3A4. J Chem Theory Comput. 2016;12(4):2101–2109.
  • Zhu L, Jiang H, Sheong FK, et al. A flexible domain-domain hinge promotes an induced-fit dominant mechanism for the loading of guide-dna into argonaute protein in thermus thermophilus. J Phys Chem B. 2016;120:2709–2720.
  • Marinelli F, Kuhlmann SI, Grell E, et al. Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins. Proc Natl Acad Sci USA. 2011;108:E1285–E1292.
  • Bisha I, Rodriguez A, Laio A, et al. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward-facing conformation of vSGLT. PLoS Comput Biol. 2014;12(10):1–8.
  • Michel J, Cuchillo R. The impact of small molecule binding on the energy landscape of the intrinsically disordered protein c-myc. PLoS One. 2012;7(7):1–13.
  • Damas JM, Filipe LC, Campos SR, et al. Predicting the thermodynamics and kinetics of helix formation in a cyclic peptide model. J Chem Theory Comput. 2013;9:5148–5157.
  • Mahajan SP, Velez-Vega C, Escobedo FA. Tilting the balance between canonical and noncanonical conformations for the h1 hypervariable loop of a llama VHH through point mutations. J Phys Chem B. 2013;117:13–24.
  • Do TN, Choy WY, Karttunen M. Accelerating the conformational sampling of intrinsically disordered proteins. J Chem Theory Comput. 2014;10:5081–5094.
  • Zerze GH, Miller CM, Granata D, et al. Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics. J Chem Theory Comput. 2015;11(6):2776–2782.
  • Camilloni C, Vendruscolo M. Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. J Am Chem Soc. 2014;136:8982–8991.
  • Camilloni C, Vendruscolo M. Using pseudocontact shifts and residual dipolar couplings as exact nmr restraints for the determination of protein structural ensembles. Biochemistry. 2015;54:7470–7476.
  • Chiu CC, Singh S, de Pablo J. Effect of proline mutations on the monomer conformations of amylin. Biophys J. 2013;105:1227–1235.
  • Pietrucci F, Mollica L, Blackledge M. Mapping the native conformational ensemble of proteins from a combination of simulations and experiments: new insight into the src-sh3 domain. J Phys Chem Lett. 2013;4(11):1943–1948.
  • Corbi-Verge C, Marinelli F, Zafra-Ruano A, et al. Two-state dynamics of the SH3–SH2 tandem of abl kinase and the allosteric role of the n-cap. Proc Natl Acad Sci USA. 2013;110:E3372–E3380.
  • Buchanan LE, Dunkelberger EB, Tran HQ, et al. Mechanism of iapp amyloid fibril formation involves an intermediate with a transient-sheet. Proc Natl Acad Sci USA. 2013;110:19285–19290.
  • Scarabelli G, Provasi D, Negri A, et al. Bioactive conformations of two seminal delta opioid receptor penta-peptides inferred from free-energy profiles. Biopolymers. 2014;101(1):21–27.
  • Ceballos JA, Giraldo MA, Cossio P. Effects of a disulfide bridge prior to amyloid formation of the ABRI peptide. RSC Adv. 2014;4:36923–36928.
  • Li D, Liu M, Ji B. Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys J. 2015;109(3):647–660.
  • Hoffmann KQ, McGovern M, Chiu Cc, et al. Secondary structure of rat and human amylin across force fields. PLoS One. 2015;10(7):1–24.
  • Gómez-Sicilia À, Sikora M, Cieplak M, et al. An exploration of the universe of polyglutamine structures. PLoS Comput Biol. 2015;11(10):e1004541.
  • Cristina P, Michela G, Laura B, et al. Metadynamics simulations rationalise the conformational effects induced by n-methylation of RGD cyclic hexapeptides. Chem Eur J. 2015;21:14165–14170.
  • Camilloni C, Sala BM, Sormanni P, et al. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Sci Rep. 2016;6:25559.
  • Singh R, Bansal R, Rathore AS, et al. Equilibrium ensembles for insulin folding from bias-exchange metadynamics. Biophys J. 2017;112(8):1571–1585.
  • Mlýnský V, Bussi G. Molecular dynamics simulations reveal an interplay between shape reagent binding and RNA flexibility. J Phys Chem Lett. 2018;9:313–318.
  • Cunha RA, Bussi G. Unraveling Mg2+-RNA binding with atomistic molecular dynamics. RNA. 2017;23:628–638.
  • Bian Y, Tan C, Wang J, et al. Atomistic picture for the folding pathway of a hybrid-1 type human telomeric dna g-quadruplex. PLoS Comput Biol. 2014;10(4):1–11.
  • Bian Y, Zhang J, Wang J et al. Free energy landscape and multiple folding pathways of an h-type rna pseudoknot. PLoS One. 2015;10(6):1–16.
  • Heller GT, Aprile FA, Bonomi M et al. Sequence specificity in the entropy-driven binding of a small molecule and a disordered peptide. J Mol Biol. 2017;429:2772–2779.
  • Löhr T, Jussupow A, Camilloni C. Metadynamic metainference: convergence towards force field independent structural ensembles of a disordered peptide. J Comput Phys. 2017;146(16):165102.
  • Prakash A, Baer MD, Mundy CJ, et al. Peptoid backbone flexibility dictates its interaction with water and surfaces: a molecular dynamics investigation. Biomacromolecules. 2018;19(3):1006–1015.
  • Fu CD, Pfaendtner J. Lifting the curse of dimensionality on enhanced sampling of reaction networks with parallel bias metadynamics. J Chem Theory Comput. 2018;14:2516–2525.
  • Awasthi S, Nair NN. Exploring high dimensional free energy landscapes: temperature accelerated sliced sampling. J Chem Phys. 2017;146(9):094108.
  • Cuendet MA, Tuckerman ME. Free energy reconstruction from metadynamics or adiabatic free energy dynamics simulations. J Chem Theory Comput. 2014;10:2975.
  • Awasthi S, Gupta S, Tripathi R, et al. Mechanism and kinetics of aztreonam hydrolysis catalyzed by class-c β-lactamase: a temperature-accelerated sliced sampling study. J Phys Chem B. 2018;122:4299–4308.
  • Vithani N, Jagtap PKA, Verma SK, et al. Mechanism of Mg2+-accompanied product release in sugar nucleotidyltransferases. Structure. 2018;26:459–466.
  • Sahoo SK, Nair NN. Interfacing the core-shell or the drude polarizable force field with car-parrinello molecular dynamics for QM/MM simulations. Front Chem. 2018;6:275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.