509
Views
11
CrossRef citations to date
0
Altmetric
Articles

Interfacial barriers to gas transport: probing solid-gas interfaces at the atomistic level

ORCID Icon & ORCID Icon
Pages 1148-1162 | Received 10 Apr 2019, Accepted 14 Jun 2019, Published online: 02 Jul 2019

References

  • Baker RW, Low BT. Gas separation membrane materials: a perspective. Macromolecules. 2014;47:6999–7013. doi: 10.1021/ma501488s
  • Heink W, Kärger J, Vasenkov S. Application of pulsed field gradient NMR to characterize the transport properties of microporous membranes. In: Kanellopoulos NK, editor. Membrane science and technology, vol. 6. Amsterdam: Elsevier; 2000. p. 97–108.
  • Sholl DS. Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations. Acc Chem Res. 2006;39:403–411. doi: 10.1021/ar0402199
  • Gulín-González J, Schüring A, Fritzsche S, et al. The influence of the desorption barrier on the transport of molecules through the external surface of nanoporous crystals. Chem Phys Lett. 2006;430:60–66. doi: 10.1016/j.cplett.2006.07.102
  • Dutta RC, Bhatia SK. Transport diffusion of light gases in polyethylene using atomistic simulations. Langmuir. 2017;33:936–946. doi: 10.1021/acs.langmuir.6b04037
  • Sanders ES, Koros WJ. Sorption of CO2, C2H4, N2O and their binary mixtures in poly(methyl methacrylate). J Polym Sci, Part B: Polym Phys. 1986;24:175–188. doi: 10.1002/polb.1986.180240117
  • Skoulidas AI, Sholl DS. Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J Phys Chem A. 2003;107:10132–10141. doi: 10.1021/jp0354301
  • Robeson LM. The upper bound revisited. J Membr Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030
  • Jeon MY, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature. 2017;543:690–694. doi: 10.1038/nature21421
  • Huang S, Dakhchoune M, Luo W, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat Commun. 2018;9:2632. doi: 10.1038/s41467-018-04904-3
  • Wang L, Boutilier MSH, Kidambi PR, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat Nanotechnol. 2017;12:509–522. doi: 10.1038/nnano.2017.72
  • Dutta RC, Bhatia SK. Structure and gas transport at the polymer–zeolite interface: insights from molecular dynamics simulations. ACS Appl Mater Interfaces. 2018;10:5992–6005. doi: 10.1021/acsami.7b17470
  • Li T, Pan Y, Peinemann K-V, et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci. 2013;425–426:235–242. doi: 10.1016/j.memsci.2012.09.006
  • Dutta RC, Bhatia SK. Interfacial barriers to gas transport in zeolites: distinguishing internal and external resistances. Phys Chem Chem Phys. 2018;20:26386–26395. doi: 10.1039/C8CP05834B
  • Hong M, Falconer JL, Noble RD. Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Ind Eng Chem Res. 2005;44:4035–4041. doi: 10.1021/ie048739v
  • Jee S E, McGaughey AJH, Sholl DS. Molecular simulations of hydrogen and methane permeation through pore mouth modified zeolite membranes. Mol Simul. 2009;35:70–78. doi: 10.1080/08927020802162900
  • Chmelik C, Varma A, Heinke L, et al. Effect of surface modification on uptake rates of isobutane in MFI crystals: an infrared microscopy study. Chem Mater. 2007;19:6012–6019. doi: 10.1021/cm071632o
  • Sun C, Boutilier MSH, Au H, et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir. 2014;30:675–682. doi: 10.1021/la403969g
  • Liu L, Nicholson D, Bhatia SK. Effects of flange adsorption affinity and membrane porosity on interfacial resistance in carbon nanotube membranes. ACS Appl Mater Interfaces. 2018;10:34706–34717. doi: 10.1021/acsami.8b08886
  • Glavatskiy KS, Bhatia SK. Thermodynamic resistance to matter flow at the interface of a porous membrane. Langmuir. 2016;32:3400–3411. doi: 10.1021/acs.langmuir.6b00375
  • Varanasi SR, Subramanian Y, Bhatia SK. High interfacial barriers at narrow carbon nanotube–water interfaces. Langmuir. 2018;34:8099–8111. doi: 10.1021/acs.langmuir.8b00616
  • Kärger J. In-depth study of surface resistances in nanoporous materials by microscopic diffusion measurement. Microporous Mesoporous Mater. 2014;189:126–135. doi: 10.1016/j.micromeso.2013.11.023
  • Ahunbay MG, Elliott JR, Talu O. Surface resistance to permeation through the silicalite single crystal membrane: variation with permeant. J Phys Chem B. 2004;108:7801–7808. doi: 10.1021/jp040002w
  • Glavatskiy KS, Bhatia SK, Glavatskiy KS, et al. Effect of pore size on the interfacial resistance of a porous membrane. J Membr Sci. 2017;524:738–745. doi: 10.1016/j.memsci.2016.11.062
  • Shen D, Rees LVC. Study of carbon dioxide diffusion in zeolites with one- and three-dimensional channel networks by MD simulations and FR methods. J chem Soc Faraday Trans. 1996;92:487–491. doi: 10.1039/ft9969200487
  • Teixeira AR, Qi X, Chang C-C, et al. On asymmetric surface barriers in MFI zeolites revealed by frequency response. J Phys Chem C. 2014;118:22166–22180. doi: 10.1021/jp507212b
  • Teixeira AR, Chang C-C, Coogan T, et al. Dominance of surface barriers in molecular transport through silicalite-1. J Phys Chem C. 2013;117:25545–25555. doi: 10.1021/jp4089595
  • Heinke L, Kärger J. Correlating surface permeability with intracrystalline diffusivity in nanoporous solids. Phys Rev Lett. 2011;106:074501. doi: 10.1103/PhysRevLett.106.074501
  • Newsome DA, Sholl DS. Influences of interfacial resistances on gas transport through carbon nanotube membranes. Nano Lett. 2006;6:2150–2153. doi: 10.1021/nl061181r
  • Newsome DA, Sholl DS. Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes. J Phys Chem B. 2006;110:22681–9. doi: 10.1021/jp063287g
  • Zimmermann NER, Balaji SP, Keil FJ. Surface barriers of hydrocarbon transport triggered by ideal zeolite structures. J Phys Chem C. 2012;116:3677–3683. doi: 10.1021/jp2112389
  • Kärger J, Caro J. Interpretation and correlation of zeolitic diffusivities obtained from nuclear magnetic resonance and sorption experiments. J Chem Soc Faraday Trans: Phys Chem Condens Phase. 1977;73:1363–1376. doi: 10.1039/f19777301363
  • Gueudré L, Jolimaîte E, Bats N, et al. Diffusion in zeolites: is surface resistance a critical parameter? Adsorption. 2010;16:17–27. doi: 10.1007/s10450-010-9213-6
  • Teixeira AR, Qi X, Conner WC, et al. 2D surface structures in small zeolite MFI crystals. Chem Mater. 2015;27:4650–4660. doi: 10.1021/acs.chemmater.5b01046
  • Hibbe F, Chmelik C, Heinke L, et al. The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J Am Chem Soc. 2011;133:2804–2807. doi: 10.1021/ja108625z
  • Heinke L, Tzoulaki D, Chmelik C, et al. Assessing guest diffusivities in porous hosts from transient concentration profiles. Phys Rev Lett. 2009;102:065901. doi: 10.1103/PhysRevLett.102.065901
  • Kärger J, Binder T, Chmelik C, et al. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat Mater. 2014;13:333–343. doi: 10.1038/nmat3917
  • Remi JCS, Lauerer A, Chmelik C, et al. The role of crystal diversity in understanding mass transfer in nanoporous materials. Nat Mater. 2015;15:401–406. doi: 10.1038/nmat4510
  • Karwacki L, Stavitski E, Kox MHF, et al. Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template-removal process. Angew Chem. 2007;46:7228–7231.
  • Mitchell S, Michels N-L, Kunze K, et al. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nat Chem. 2012;4:825. doi: 10.1038/nchem.1403
  • Seebacher C, Rau J, Deeg F-W, et al. Visualization of mesostructures and organic guest inclusion in molecular sieves with confocal microscopy. Advanced Materials. 2001;13:1374–1377. doi: 10.1002/1521-4095(200109)13:18<1374::AID-ADMA1374>3.0.CO;2-A
  • Kärger J, Ruthven DM. Diffusion in nanoporous materials: fundamental principles, insights and challenges. New J Chem. 2016;40:4027–4048. doi: 10.1039/C5NJ02836A
  • Kärger J. Measurement of diffusion in zeolites—a never ending challenge? Adsorption. 2003;9:29–35. doi: 10.1023/A:1023811229823
  • Liu L, Nicholson D, Bhatia SK. Interfacial resistance and length-dependent transport diffusivities in carbon nanotubes. J Phys Chem C. 2016;120:26363–26373. doi: 10.1021/acs.jpcc.6b09136
  • Zhang X, Zhou W, Xu F, et al. Resistance of water transport in carbon nanotube membranes. Nanoscale. 2018;10:13242–9. doi: 10.1039/C8NR03116A
  • Arya G, Maginn EJ, Chang H-C. Effect of the surface energy barrier on sorbate diffusion in AlPO4-5. J Phys Chem B. 2001;105:2725–2735. doi: 10.1021/jp003350g
  • Newsome DA, Sholl DS. Predictive assessment of surface resistances in zeolite membranes using atomically detailed models. J Phys Chem B. 2005;109:7237–7244. doi: 10.1021/jp044247k
  • Newsome DA, Sholl DS. Atomically detailed simulations of surface resistances to transport of CH4, CF4, and C2H6 through silicalite membranes. Microporous Mesoporous Mater. 2008;107:286–295. doi: 10.1016/j.micromeso.2007.03.016
  • Mason EA, Malinauskas AP, Evans RB. Flow and diffusion of gases in porous media. J Chem Phys. 1967;46:3199–3216. doi: 10.1063/1.1841191
  • Heffelfinger GS, Swol Fv. Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD). J Chem Phys. 1994;100:7548–7552. doi: 10.1063/1.466849
  • Ahunbay MG, Elliott JR, Talu O. The diffusion process of methane through a silicalite single crystal membrane. J Phys Chem B. 2002;106:5163–5168. doi: 10.1021/jp013613m
  • MacElroy JMD, Boyle MJ. Nonequilibrium molecular dynamics simulation of a model carbon membrane separation of CH4/H2 mixtures. Chem Eng J. 1999;74:85–97. doi: 10.1016/S1385-8947(99)00056-X
  • Zhu F, Tajkhorshid E, Schulten K. Collective diffusion model for water permeation through microscopic channels. Phys Rev Lett. 2004;93:224501. doi: 10.1103/PhysRevLett.93.224501
  • Sholl DS, Lively RP. Defects in metal–organic frameworks: challenge or opportunity? J Phys Chem Lett. 2015;6:3437–3444. doi: 10.1021/acs.jpclett.5b01135
  • Combariza AF, Sastre G. Influence of zeolite surface in the sorption of methane from molecular dynamics. J Phys Chem C. 2011;115:13751–8. doi: 10.1021/jp202043t
  • Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2009;9:172. doi: 10.1038/nmat2608
  • Sparreboom W, van den Berg A, Eijkel JCT. Transport in nanofluidic systems: a review of theory and applications. New J Phys. 2010;12:015004. doi: 10.1088/1367-2630/12/1/015004
  • Das S, Dubsky P, van den Berg A, et al. Concentration polarization in translocation of DNA through nanopores and nanochannels. Phys Rev Lett. 2012;108:138101. doi: 10.1103/PhysRevLett.108.138101
  • Majumder M, Chopra N, Andrews R, et al. Enhanced flow in carbon nanotubes. Nature. 2005;438:44. doi: 10.1038/438044a
  • Bai P, Jeon MY, Ren L, et al. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling. Nat Commun. 2015;6:5912. doi: 10.1038/ncomms6912
  • Krishna R, Paschek D. Separation of hydrocarbon mixtures using zeolite membranes: a modelling approach combining molecular simulations with the Maxwell–stefan theory. Sep Purif Technol. 2000;21:111–136. doi: 10.1016/S1383-5866(00)00196-9
  • Huddersman K, Klimczyk M. Separation of branched hexane isomers using zeolite molecular sieves. AIChE J. 1996;42:405–408.
  • Peng B, Locascio M, Zapol P, et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol. 2008;3:626–631. doi: 10.1038/nnano.2008.211
  • Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett. 2001;79:1172–1174. doi: 10.1063/1.1396632
  • Bhatia SK, Chen H, Sholl DS. Comparisons of diffusive and viscous contributions to transport coefficients of light gases in single-walled carbon nanotubes. Mol Simul. 2005;31:643–649. doi: 10.1080/00268970500108403
  • Beerdsen E, Dubbeldam D, Smit B. Understanding diffusion in nanoporous materials. Phys Rev Lett. 2006;96:044501. doi: 10.1103/PhysRevLett.96.044501
  • Bhatia SK. Characterizing structural complexity in disordered carbons: from the slit pore to atomistic models. Langmuir. 2017;33:831–847. doi: 10.1021/acs.langmuir.6b03459
  • Rincon Bonilla M, Bhatia SK. Diffusion in pore networks: effective self-diffusivity and the concept of tortuosity. J Phys Chem C. 2013;117:3343–3357. doi: 10.1021/jp3070954
  • Kočiřík M, Struve P, Fiedler K, et al. A model for the mass-transfer resistance at the surface of zeolite crystals. J Chem Soc Faraday Trans. 1988;1(84):3001–3013. doi: 10.1039/f19888403001
  • Majumder M, Chopra N, Hinds BJ. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J Am Chem Soc. 2005;127:9062–9070. doi: 10.1021/ja043013b
  • Suk ME, Raghunathan AV, Aluru NR. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl Phys Lett. 2008;92:133120. doi: 10.1063/1.2907333
  • Suk ME, Aluru NR. Water transport through ultrathin graphene. J Phys Chem Lett. 2010;1:1590–1594. doi: 10.1021/jz100240r
  • Nicholls WD, Borg MK, Lockerby DA, et al. Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Nanofluidics. 2012;12:257–264. doi: 10.1007/s10404-011-0869-3
  • Dauenhauer PJ. Reply to “comment on ‘on asymmetric surface barriers in MFI zeolites revealed by frequency response’”. J Phys Chem C. 2015;119:29203–5. doi: 10.1021/acs.jpcc.5b09512
  • Brandani S, Caro J, Jobic H, et al. Diffusion of n-alkanes in zeolites: the benefit of observation over different length scales. In: Xu R, Gao Z, Chen J, Yan W, editor. Studies in surface science and catalysis, vol. 170. Amsterdam: Elsevier; 2007. p. 981–987.
  • Karwacki L, Kox MHF, de Winter DA M, et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat Mater. 2009;8:959–965. doi: 10.1038/nmat2530
  • Geier O, Vasenkov S, Lehmann E, et al. Interference Microscopy investigation of the influence of regular intergrowth effects in MFI-type zeolites on molecular uptake. J Phys Chem B. 2001;105:10217–10222. doi: 10.1021/jp010777u
  • Chen C, Ozcan A, Yazaydin AO, et al. Gas permeation through single-crystal ZIF-8 membranes. J Membr Sci. 2019;575:209–216. doi: 10.1016/j.memsci.2019.01.027
  • Alian AR, Meguid SA, Kundalwal SI. Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon NY. 2017;125:180–188. doi: 10.1016/j.carbon.2017.09.056
  • Kärger J, Ruthven DM, Theodorou DN. Sorption kinetics. In: Kärger J, Ruthven DM, Theodorou DN, editor. Diffusion in nanoporous materials, vol. 1. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 143–189.
  • Zhang L, Chmelik C, van Laak ANC, et al. Direct assessment of molecular transport in mordenite: dominance of surface resistances. Chem Commun. 2009:6424–6426. doi: 10.1039/b914391b
  • Gueudré L, Bats N, Jolimaître E. Effect of surface resistance on cyclohexane uptake curves in silicalite-1 crystals. Microporous Mesoporous Mater. 2012;147:310–317. doi: 10.1016/j.micromeso.2011.06.032
  • Sastre G, Kärger J, Ruthven DM. Molecular dynamics study of diffusion and surface permeation of benzene in silicalite. J Phys Chem C. 2018;122:7217–7225. doi: 10.1021/acs.jpcc.8b00520
  • Ruthven DM, Vidoni A. ZLC diffusion measurements: combined effect of surface resistance and internal diffusion. Chem Eng Sci. 2012;71:1–4. doi: 10.1016/j.ces.2011.11.040
  • Zimmermann NER, Smit B, Keil FJ. On the effects of the external surface on the equilibrium transport in zeolite crystals. J Phys Chem C. 2010;114:300–310. doi: 10.1021/jp904267a
  • Zimmermann NER, Smit B, Keil FJ. Predicting local transport coefficients at solid–gas interfaces. J Phys Chem C. 2012;116:18878–18883. doi: 10.1021/jp3059855
  • Crabtree JC, Molinari M, Parker SC, et al. Simulation of the adsorption and transport of CO2 on faujasite surfaces. J Phys Chem C. 2013;117:21778–21787. doi: 10.1021/jp4053727
  • Kalantzopoulos GN, Policicchio A, Maccallini E, et al. Resistance to the transport of H2 through the external surface of as-made and modified silicalite-1 (MFI). Microporous Mesoporous Mater. 2016;220:290–297. doi: 10.1016/j.micromeso.2015.08.039
  • Vasenkov S, Böhlmann W, Galvosas P, et al. PFG NMR study of diffusion in Mfi-type zeolites: evidence of the existence of intracrystalline transport barriers. J Phys Chem B. 2001;105:5922–5927. doi: 10.1021/jp003899f
  • Ahunbay MG, Elliott JR, Talu O. Effect of surface resistances on the diffusion of binary mixtures in the silicalite single crystal membrane. J Phys Chem B. 2005;109:923–929. doi: 10.1021/jp046384n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.