349
Views
7
CrossRef citations to date
0
Altmetric
Articles

Directed transport of liquid droplets on vibrating substrates with asymmetric corrugations and patterned wettability: a dissipative particle dynamics study

, , , &
Pages 33-40 | Received 11 Jun 2019, Accepted 30 Aug 2019, Published online: 20 Sep 2019

References

  • Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77(3):977–1026. doi: 10.1103/RevModPhys.77.977
  • Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16(13):2376–2396. doi: 10.1039/C6LC00387G
  • Lapierre F, Jonsson-Niedziolka M, Coffinier Y, et al. Droplet transport by electrowetting: lets get rough. Microfluid Nanofluid. 2013;15(3):327–336. doi: 10.1007/s10404-013-1149-1
  • Cui WW, Zhang ML, Duan XX, et al. Dynamics of electrowetting droplet motion in digital Microfluidics systems: from dynamic saturation to device physics. Micromachines. 2015;6(6):778–789. doi: 10.3390/mi6060778
  • Raman KA, Jaiman RK, Lee TS, et al. A numerical study on electrowetting-induced jumping and transport of droplet. Int J Heat Mass Tran. 2016;99:805–821. doi: 10.1016/j.ijheatmasstransfer.2016.04.038
  • Aminfar H, Mohammadpourfard M. Droplets merging and stabilization by electrowetting: Lattice Boltzmann study. J Adhes Sci Technol. 2012;26(12–17):1853–1871.
  • Yeh S-I, Fang W-F, Sheen H-J, et al. Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid Nanofluid. 2013;14(5):785–795. doi: 10.1007/s10404-012-1096-2
  • Bansal S, Sen P. Effect of electrowetting induced capillary oscillations on coalescence of compound droplets. J Colloid Interf Sci. 2018;530:223–232. doi: 10.1016/j.jcis.2018.05.090
  • Mugele F, Baret JC, Steinhauser D. Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett. 2006;88(20):204106. doi: 10.1063/1.2204831
  • Lai Y-H, Hsu M-H, Yang J-T. Enhanced mixing of droplets during coalescence on a surface with a wettability gradient. Lab Chip. 2010;10(22):3149–3156. doi: 10.1039/c003729j
  • Guan Y, Tong AY. A numerical study of droplet splitting and merging in a parallel-plate electrowetting-on-dielectric Device. J Heat Trans T Asme. 2015;137(9):091016. doi: 10.1115/1.4030229
  • Choi S, Kwon Y, Choi Y-S, et al. Improvement in the breakdown properties of electrowetting using polyelectrolyte ionic solution. Langmuir. 2013;29(1):501–509. doi: 10.1021/la303903m
  • Mibus M, Jensen C, Hu X, et al. Dielectric breakdown and failure of anodic aluminum oxide films for electrowetting systems. J Appl Phys. 2013;114(1):014901. doi: 10.1063/1.4812395
  • Morrissette JM, Mahapatra PS, Ghosh A, et al. Rapid, self-driven liquid mixing on open-surface microfluidic platforms. Sci Rep-UK. 2017;7(1):1800. doi: 10.1038/s41598-017-01725-0
  • Pratap V, Moumen N, Subramanian RS. Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir. 2008;24(9):5185–5193. doi: 10.1021/la7036839
  • Bjelobrk N, Girard H-L, Bengaluru Subramanyam S, et al. Thermocapillary motion on lubricant-impregnated surfaces. Phys Rev Fluids. 2016;1(6):063902. doi: 10.1103/PhysRevFluids.1.063902
  • Dai Q, Khonsari MM, Shen C, et al. Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient. Langmuir. 2016;32(30):7485–7492. doi: 10.1021/acs.langmuir.6b01614
  • Suda H, Yamada S. Force measurements for the movement of a water drop on a surface with a surface tension gradient. Langmuir. 2003;19(3):529–531. doi: 10.1021/la0264163
  • Moumen N, Subramanian RS, McLaughlin JB. Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient. Langmuir. 2006;22(6):2682–2690. doi: 10.1021/la053060x
  • Chowdhury IU, Sinha Mahapatra P, Sen AK. Self-driven droplet transport: effect of wettability gradient and confinement. Phys Fluids. 2019;31(4):042111. doi: 10.1063/1.5088562
  • Tretyakov N, Muller M. Directed transport of polymer drops on vibrating superhydrophobic substrates: a molecular dynamics study. Soft Matter. 2014;10(24):4373–4386. doi: 10.1039/c3sm53156b
  • Hu Q, Ren Y, Liu W, et al. Fluid flow and mixing induced by AC continuous electrowetting of liquid metal droplet. Micromachines. 2017;8(4):119. doi: 10.3390/mi8040119
  • Wang JD, Chen S, Chen DR. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study. Phys Chem Chem Phys. 2015;17(45):30533–30539. doi: 10.1039/C5CP05045F
  • Gao S, Liao QW, Liu W, et al. Effects of solid fraction on droplet wetting and vapor condensation: a molecular dynamic simulation study. Langmuir. 2017;33(43):12379–12388. doi: 10.1021/acs.langmuir.7b03193
  • Ambrosia MS, Ha MY. A molecular dynamics study of Wenzel state water droplets on anisotropic surfaces. Comput Fluids. 2018;163:1–6. doi: 10.1016/j.compfluid.2017.12.013
  • Li H, Yan TY, Fichthorn KA, et al. Dynamic contact angles and mechanisms of motion of water droplets moving on nanopillared superhydrophobic surfaces: a molecular dynamics simulation study. Langmuir. 2018;34(34):9917–9926. doi: 10.1021/acs.langmuir.8b01324
  • Drazer G, Khusid B, Koplik J, et al. Wetting and particle adsorption in nanoflows. Phys Fluids. 2005;17(1):017102. doi: 10.1063/1.1815341
  • Moosavi A, Rauscher M, Dietrich S. Size dependent motion of nanodroplets on chemical steps. J Chem Phys. 2008;129(4):044706. doi: 10.1063/1.2955860
  • Rauscher M, Dietrich S. Nano-droplets on structured substrates. Soft Matter. 2009;5(16):2997–3001. doi: 10.1039/b903813b
  • Zhang Z, Zhao CR, Yang XT, et al. Micrometer-sized droplet impingement dynamics on flat and micro-structured surfaces. Ann Nucl Energy. 2018;112:464–473. doi: 10.1016/j.anucene.2017.10.025
  • Wang X, Sun D-L, Wang X-D, et al. Dynamics of droplets impacting hydrophilic surfaces decorated with a hydrophobic strip. Int J Heat Mass Transf. 2019;135:235–246. doi: 10.1016/j.ijheatmasstransfer.2019.01.135
  • Ding H, Spelt PDM. Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations. J Fluid Mech. 2007;576:287–296. doi: 10.1017/S0022112007004910
  • Li S, Fan H. On multiscale moving contact line theory. P Roy Soc A Math Phy. 2015;471(2179):20150224. doi: 10.1098/rspa.2015.0224
  • Li Z, Hu GH, Wang ZL, et al. Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Phys Fluids. 2013;25(7):072103. doi: 10.1063/1.4812366
  • Li Z, Drazer G. Hydrodynamic interactions in dissipative particle dynamics. Phys Fluids. 2008;20(10):103601. doi: 10.1063/1.2980039
  • Espanol P, Warren PB. Perspective: dissipative particle dynamics. J Chem Phys. 2017;146(15):150901. doi: 10.1063/1.4979514
  • Warren PB. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E. 2003;68(6):066702. doi: 10.1103/PhysRevE.68.066702
  • Wang Y, Chen S. Droplets impact on textured surfaces: mesoscopic simulation of spreading dynamics. Appl Surf Sci. 2015;327:159–167. doi: 10.1016/j.apsusc.2014.11.148
  • Zhao J, Chen S, Liu Y. Dynamical behaviors of droplet impingement and spreading on chemically heterogeneous surfaces. Appl Surf Sci. 2016;400:515–523. doi: 10.1016/j.apsusc.2016.12.209
  • Zhao J, Chen S, Liu Y. Droplets motion on chemically/topographically heterogeneous surfaces. Mol Simulat. 2016;42(17):1452–1459. doi: 10.1080/08927022.2016.1198478
  • Wang L, Rui Z, Zhang X, et al. Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid Nanofluid. 2017;21(4):61. doi: 10.1007/s10404-017-1900-0
  • Zhao JY, Chen S. Following or against topographic wettability gradient: movements of droplets on a micropatterned surface. Langmuir. 2017;33(21):5328–5335. doi: 10.1021/acs.langmuir.7b00438
  • Zhang K, Chen S, Wang Y. Ratio dependence of contact angle for droplet wetting on chemically heterogeneous substrates. Colloid Surface A. 2018;539:237–242. doi: 10.1016/j.colsurfa.2017.12.026
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107(11):4423–4435. doi: 10.1063/1.474784
  • Hoogerbrugge PJ, Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992;19(3):155–160. doi: 10.1209/0295-5075/19/3/001
  • Espanol P, Warren P. Statistical-mechanics of dissipative particle dynamics. Europhys Lett. 1995;30(4):191–196. doi: 10.1209/0295-5075/30/4/001
  • Merabia S, Pagonabarraga I. A mesoscopic model for (de)wetting. Eur Phys J E. 2006;20(2):209–214. doi: 10.1140/epje/i2005-10128-1
  • Cupelli C, Henrich B, Glatzel T, et al. Dynamic capillary wetting studied with dissipative particle dynamics. New J Phys. 2008;10(4):043009. doi: 10.1088/1367-2630/10/4/043009
  • Lin CS, Chen S, Xiao LL, et al. Tuning drop motion by chemical chessboard-patterned surfaces: a many-body dissipative particle dynamics study. Langmuir. 2018;34(8):2708–2715. doi: 10.1021/acs.langmuir.7b04162
  • Revenga M, Zúñiga I, Español P, et al. Boundary models in DPD. Int J Modern Phys C. 1998;09(08):1319–1328. doi: 10.1142/S0129183198001199
  • Plimpton S. Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Sendner C, Horinek D, Bocquet L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir. 2009;25(18):10768–10781. doi: 10.1021/la901314b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.