226
Views
31
CrossRef citations to date
0
Altmetric
Articles

Theoretical insights into sensing of hexavalent chromium on buckled and planar polymeric carbon nitride nanosheets of heptazine and triazine structures

ORCID Icon, ORCID Icon &
Pages 54-61 | Received 30 Mar 2019, Accepted 08 Sep 2019, Published online: 07 Oct 2019

References

  • Ghashghaee M, Farzaneh V. Removal of Cr(VI) species from aqueous solution by different nanoporous materials. Iran J Toxicol. 2016;10:15–21.
  • Lukman S, Essa MH, Mùazu ND, et al. Adsorption and desorption of heavy metals onto natural clay material: influence of initial pH. J Environ Sci Technol. 2013;6:1–15. doi: 10.3923/jest.2013.1.15
  • Northcott K, Kokusen H, Komatsu Y, et al. Synthesis and surface Modification of Mesoporous Silicate SBA-15 for the adsorption of metal ions. Sep Sci Technol. 2006;41:1829–1840. doi: 10.1080/01496390600725760
  • Ghashghaee M, Ghambarian M. Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct Chem. 2019;30:85–96. doi: 10.1007/s11224-018-1173-6
  • Borysiuk V, Nedilko SG, Hizhny YA. Prospects for the Use of carbon nanotubes as resistivity sensors of CrO42– molecular anions. Sensor Electronics and Microsystem Technologies. 2018;15:67–79. doi: 10.18524/1815-7459.2018.2.136889
  • Šikovec M, Franko M, Cruz FG, et al. Thermal lens spectrometric determination of hexavalent chromium. Anal. Chim. Acta. 1996;330:245–250. doi: 10.1016/0003-2670(96)00175-4
  • Pandey K, Sharma SK, Sambi SS. Kinetics and equilibrium study of chromium adsorption on zeoliteNaX. Int J Environ Sci Tech. 2010;7:395–404. doi: 10.1007/BF03326149
  • Salunkhe B, Raut SJ. Removal of heavy metal Ni (II) and Cr (VI) from aqueous solution by scolecite natural zeolite. Int J Chem Sci. 2012;10:1133–1148.
  • Romero-González J, Peralta-Videa JR, Rodrı´guez E, et al. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn. 2005;37:343–347. doi: 10.1016/j.jct.2004.09.013
  • Satapathy D, Natarajan GS, Patil SJ. Adsorption characteristics of chromium(VI) on granular activated carbon. J Chin Chem Soc. 2005;52:35–44. doi: 10.1002/jccs.200500006
  • Ong W-J, Tan L-L, Ng YH, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116:7159–7329. doi: 10.1021/acs.chemrev.6b00075
  • Wang A, Wang C, Fu L, et al. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 2017;9:47. doi: 10.1007/s40820-017-0148-2
  • Lu Y-C, Chen J, Wang A-J, et al. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C. 2015;3:73–78. doi: 10.1039/C4TC02111H
  • Han J, Zou HY, Gao MX, et al. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta. 2016;148:279–284. doi: 10.1016/j.talanta.2015.10.038
  • Ma TY, Tang Y, Dai S, et al. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small. 2014;10:2382–2389. doi: 10.1002/smll.201303827
  • Safdari F, Shamkhali AN, Tafazzoli M, et al. Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory. J Mol Liq. 2018;260:423–435. doi: 10.1016/j.molliq.2018.03.114
  • Fronczak M, Demby K, Strachowski P, et al. Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper(II) ions. Langmuir. 2018;34:7272–7283. doi: 10.1021/acs.langmuir.8b01041
  • Li X, Xing J, Zhang C, et al. Adsorption of lead on sulfur-doped graphitic carbon nitride nanosheets: experimental and theoretical calculation study. ACS Sustain Chem Eng. 2018;6:10606–10615. doi: 10.1021/acssuschemeng.8b01934
  • Azofra LM, MacFarlane DR, Sun C. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion. Phys Chem Chem Phys. 2016;18:18507–18514. doi: 10.1039/C6CP02453J
  • Ji Y, Dong H, Lin H, et al. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Adv. 2016;6:52377–52383. doi: 10.1039/C6RA06425F
  • Kuang G, Chen SZ, Yan L, et al. Negative differential conductance in polyporphyrin oligomers with nonlinear backbones. J. Am. Chem. Soc. 2018;140:570–573. doi: 10.1021/jacs.7b11016
  • Zeng J, Chen K-Q. Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device. Appl Phys Lett. 2014;104:033104. doi: 10.1063/1.4862895
  • Huang H, Chen R, Ma J, et al. Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem Commun. 2014;50:15415–8. doi: 10.1039/C4CC06659F
  • Tian J, Liu Q, Ge C, et al. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale. 2013;5:8921–8924. doi: 10.1039/c3nr02031b
  • Shiravand G, Badiei A, Mohammadi Ziarani G. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sensor Actuat B-Chem. 2017;242:244–252. doi: 10.1016/j.snb.2016.11.038
  • Rong M, Lin L, Song X, et al. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron. 2015;68:210–217. doi: 10.1016/j.bios.2014.12.024
  • Zhang X-L, Zheng C, Guo S-S, et al. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet–MnO2 sandwich nanocomposite. Anal Chem. 2014;86:3426–3434. doi: 10.1021/ac500336f
  • Tang Y, Song H, Su Y, et al. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem. 2013;85:11876–11884. doi: 10.1021/ac403517u
  • Algara-Siller G, Severin N, Chong SY, et al. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew Chem Int Ed. 2014;53:7450–7455. doi: 10.1002/anie.201402191
  • Zambon A, Mouesca JM, Gheorghiu C, et al. Dubois L. s-heptazine oligomers: promising structural models for graphitic carbon nitride. Chem Sci. 2016;7:945–950. doi: 10.1039/C5SC02992A
  • Gracia J, Kroll P. Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state. J Mater Chem. 2009;19:3013–3019. doi: 10.1039/b821568e
  • Ghambarian M, Azizi Z, Ghashghaee M. Cluster modeling and coordination structures of Cu+ ions in Al-incorporated Cu-MEL catalysts – a density functional theory study. J Mex Chem Soc. 2017;61:1–13. doi: 10.29356/jmcs.v61i1.122
  • Ghambarian M, Ghashghaee M, Azizi Z. Coordination and siting of Cu+ Ion adsorbed into Silicalite-2 Porous structure: a density functional theory study. Phys Chem Res. 2017;5:135–152.
  • Ghashghaee M, Shirvani S, Ghambarian M, et al. Synergistic coconversion of refinery fuel oil and methanol over H-ZSM-5 catalyst for enhanced production of light olefins. Energy Fuels. 2019: In Press.
  • Valiev M, Bylaska EJ, Govind N, et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun. 2010;181:1477–1489. doi: 10.1016/j.cpc.2010.04.018
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi: 10.1002/jcc.22885
  • Macrae CF, Bruno IJ, Chisholm JA, et al. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x
  • Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8:1057–1065. doi: 10.1039/b515623h
  • Göltl F, Hafner J. Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates. J Chem Phys. 2012;136:064503-1–064503-31.
  • Ghambarian M, Azizi Z, Ghashghaee M. Diversity of monomeric dioxo chromium species in Cr/silicalite-2 catalysts: A hybrid density functional study. Comp Mater Sci. 2016;118:147–154. doi: 10.1016/j.commatsci.2016.03.009
  • Balar M, Azizi Z, Ghashghaee M. Theoretical identification of structural heterogeneities of divalent nickel active sites in NiMCM-41 nanoporous catalysts. J Nanostruct Chem. 2016;6:365–372. doi: 10.1007/s40097-016-0208-z
  • Chen K, Wang Z-C, Schlangen M, et al. Thermal activation of methane and ethene by bare MO.+ (M=Ge, Sn, and Pb): A Combined Theoretical/experimental study. Chem-Eur J. 2011;17:9619–9625. doi: 10.1002/chem.201101538
  • Ghashghaee M, Ghambarian M. Methane adsorption and hydrogen atom abstraction at diatomic radical cation metal oxo clusters: first-principles calculations. Mol Simul. 2018;44:850–863. doi: 10.1080/08927022.2018.1465568
  • Shtepliuk I, Yakimova R. Interband absorption in few-layer graphene quantum dots: effect of heavy metals. Materials. 2018;11:1217. doi: 10.3390/ma11071217
  • Ghashghaee M, Shirvani S, Ghambarian M. Kinetic models for hydroconversion of furfural over the ecofriendly Cu-MgO catalyst: An experimental and theoretical study. Appl Catal A-Gen. 2017;545:134–147. doi: 10.1016/j.apcata.2017.07.040
  • Ghambarian M, Ghashghaee M, Azizi Z, et al. Structural diversity of metallacycle intermediates for ethylene dimerization on heterogeneous NiMCM-41 catalyst: a quantum chemical perspective. Struct Chem. 2019;30:137–150. doi: 10.1007/s11224-018-1184-3
  • Ghashghaee M, Ghambarian M. Initiation of heterogeneous Schrock-type Mo and W oxide metathesis catalysts: a quantum thermochemical study. Comp Mater Sci. 2018;155:197–208. doi: 10.1016/j.commatsci.2018.08.031
  • Ghashghaee M, Ghambarian M. Ethene protonation over Silica-Grafted metal (Cr, Mo, and W) oxide catalysts: a comparative nanocluster modeling study. Russ J Inorg Chem. 2018;63:1570–1577. doi: 10.1134/S0036023618160015
  • Ghashghaee M, Ghambarian M, Azizi Z. Molecular-level insights into furfural hydrogenation intermediates over single-atomic Cu catalysts on magnesia and silica nanoclusters. Mol Simul. 2019;45:154–163. doi: 10.1080/08927022.2018.1547820
  • Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys. 1952;20:722–725. doi: 10.1063/1.1700523
  • Bader RFW. The quantum mechanical basis of conceptual chemistry. Monatsh Chem. 2005;136:819–854. doi: 10.1007/s00706-005-0307-x
  • Matta CF, Boyd RJ. The quantum theory of atoms in molecules: from solid state to DNA and drug design. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.