412
Views
4
CrossRef citations to date
0
Altmetric
Articles

Influence of micro grooves of diamond tool on silicon cutting: a molecular dynamic study

ORCID Icon, , , , , & show all
Pages 92-101 | Received 23 Aug 2019, Accepted 21 Sep 2019, Published online: 13 Oct 2019

References

  • Zong WJ, Sun T, Li D, et al. XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tool Manu. 2008;48:1678–1687. doi: 10.1016/j.ijmachtools.2008.06.008
  • Zhang L, Zhao H, Ma Z, et al. A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation. AIP Adv. 2012;2(042116):1–7.
  • Blake PN, Scattergood R. Ductile-regime machining of germanium and silicon. J Am Ceram Soc. 1990;73:949–957. doi: 10.1111/j.1151-2916.1990.tb05142.x
  • Shibata T, Fujii S, Makino E, et al. Ductile-regime turning mechanism of single-crystal silicon. Precis Eng. 1996;18:129–137. doi: 10.1016/0141-6359(95)00054-2
  • Fang FZ, Wu H, Liu YC. Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manu. 2005;45:1681–1686. doi: 10.1016/j.ijmachtools.2005.03.010
  • Fang FZ, Wu H, Zhou W, et al. A study on mechanism of nano-cutting single crystal silicon. J Mat Proc Tech. 2007;184:407–410. doi: 10.1016/j.jmatprotec.2006.12.007
  • Yan J, Asami T, Harada H, et al. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann. 2012;61:131–134. doi: 10.1016/j.cirp.2012.03.070
  • Goel S, Luo X, Comley P, et al. Brittle–ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tool Manu. 2013;65:15–21. doi: 10.1016/j.ijmachtools.2012.09.001
  • Yan J, Zhang Z, Kuriyagawa T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tool Manu. 2009;49:366–374. doi: 10.1016/j.ijmachtools.2008.12.007
  • Goel S, Luo X, Reuben RL, et al. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting. Nanoscale Res Lett. 2011;6:589–597. doi: 10.1186/1556-276X-6-589
  • Goel S, Luo X, Reuben RL. Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comp Mat Sci. 2012;51:402–408. doi: 10.1016/j.commatsci.2011.07.052
  • Xiao G, To S, Zhang G. Molecular dynamics modelling of brittle–ductile cutting mode transition: Case study on silicon carbide. Int J Mach Tool Manu. 2015;88:214–222. doi: 10.1016/j.ijmachtools.2014.10.007
  • Meng B, Yuan D, Xu S. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation. Int J Mech Sci. 2019;151:724–732. doi: 10.1016/j.ijmecsci.2018.12.022
  • Zhang SJ, To S, Zhang GQ. Diamond tool wear in ultra-precision machining. Int J Adv Manuf Tech. 2017;88:613–641. doi: 10.1007/s00170-016-8751-9
  • Paul E, Evans CJ, Mangamelli A, et al. Chemical aspects of tool wear in single point diamond turning. Precis Eng. 1996;18:4–19. doi: 10.1016/0141-6359(95)00019-4
  • Zhang SJ, To S, Wang SJ, et al. A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Man. 2015;91:76–95. doi: 10.1016/j.ijmachtools.2015.02.001
  • Yan J, Syoji K, Tamaki JI. Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear. 2003;255:1380–1387. doi: 10.1016/S0043-1648(03)00076-0
  • Sharif Uddin M, Seah KHW, Li XP, et al. Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear. 2004;257:751–759. doi: 10.1016/j.wear.2004.03.012
  • Li XP, He T, Rahman M. Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear. 2005;259:1207–1214. doi: 10.1016/j.wear.2004.12.020
  • Cai MB, Li XP, Rahman M. Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear. 2007;263:1459–1466. doi: 10.1016/j.wear.2006.11.030
  • Cai MB, Li XP, Rahman M. Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon. J Manuf Sci Eng. 2007;129:281–286. doi: 10.1115/1.2673567
  • Zhang Z, Yan J, Kuriyagawa T. Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide. Int J Adv Manuf Tech. 2011;57:117–125. doi: 10.1007/s00170-011-3289-3
  • Mir A, Luo X, Sun J. The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon. Wear. 2016;364-365:233–243. doi: 10.1016/j.wear.2016.08.003
  • Jumare AI, Abou-El-Hossein K, Goosen WE, et al. Prediction model for single-point diamond tool-tip wear during machining of optical grade silicon. Int J Adv Man Tech. 2018;98:2519–2529. doi: 10.1007/s00170-018-2402-2
  • Mir A, Luo X, Cheng K, et al. Investigation of influence of tool rake angle in single point diamond turning of silicon. Int J Adv Man Tech. 2018;94:2343–2355. doi: 10.1007/s00170-017-1021-7
  • Zhang Q, Fu Y, Su H, et al. Surface damage mechanism of monocrystalline silicon during single point diamond grinding. Wear. 2018;396–397:48–55. doi: 10.1016/j.wear.2017.11.008
  • Goel S, Luo X, Reuben RL, et al. Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear. 2012;284–285:65–72. doi: 10.1016/j.wear.2012.02.010
  • Goel S, Luo X, Reuben RL. Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int. 2013;57:272–281. doi: 10.1016/j.triboint.2012.06.027
  • Kai C, Huo D. Micro-cutting: fundamentals and applications. Chichester: John Wiley & Sons; 2013.
  • Sawangsri W, Cheng K. An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc Inst Mech Eng Part B J Eng Manuf. 2016;230:405–415. doi: 10.1177/0954405414554020
  • Sun X, Chen S, Cheng K, et al. Multiscale simulation on nanometric cutting of single crystal copper. Proc Inst Mech Eng Part B J Eng Manuf. 2006;220:1217–1222. doi: 10.1243/09544054JEM540SC
  • Shiari B, Miller RE, Klug DD. Multiscale simulation of material removal processes at the nanoscale. J Mech Phys Solids. 2007;55:2384–2405. doi: 10.1016/j.jmps.2007.03.018
  • Sun X, Cheng K. Multi-scale simulation of the nano-metric cutting process. Int J Adv Manuf Tech. 2009;47:891–901. doi: 10.1007/s00170-009-2125-5
  • Fung KY, Tang CY, Cheung CF. Molecular dynamics analysis of the effect of surface flaws of diamond tools on tool wear in nanometric cutting. Comput Mat Sci. 2017;133:60–70. doi: 10.1016/j.commatsci.2017.03.006
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model Simul Mater Sci Eng. 2010;18(015012):1–7.
  • Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B. 1988;38:9902–9905. doi: 10.1103/PhysRevB.38.9902
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568. doi: 10.1103/PhysRevB.39.5566
  • Tersoff J. Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1990;41:3248–3248. doi: 10.1103/PhysRevB.41.3248.2
  • Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B. 2005;71(035211):1–14.
  • Kumagai T, Izumi S, Hara S, et al. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput Mat Sci. 2007;39:457–464. doi: 10.1016/j.commatsci.2006.07.013
  • Pastewka L, Klemenz A, Gumbsch P, et al. Screened empirical bond-order potentials for Si-C. Phys Rev B. 2013;87(205410):1–12.
  • Goel S, Luo X, Agrawal A, et al. Diamond machining of silicon: A review of advances in molecular dynamics simulation. Int J Machine Tools Manuf. 2015;88:131–164. doi: 10.1016/j.ijmachtools.2014.09.013
  • Goel S, Kovalchenko A, Stukowski A, et al. Influence of microstructure on the cutting behaviour of silicon. Acta Mater. 2016;105:464–478. doi: 10.1016/j.actamat.2015.11.046
  • Goel S, Luo X, Reuben RL. Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl Phys Lett. 2012;100(231902):1–5.
  • Wang Z, Chen J, Wang G, et al. Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett. 2017;12:300. doi: 10.1186/s11671-017-2046-4
  • Wang MH, You SY, Wang FN, et al. MD simulation of tool wear behaviour based on changes of tool rake and flank angle caused by diamond tool position adjustment. Mol Simul. 2019;45:509–517. doi: 10.1080/08927022.2018.1559309
  • Wang H, To S, Chan CY, et al. A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning. Int J Mach Tool Manu. 2010;50:241–252. doi: 10.1016/j.ijmachtools.2009.12.003
  • Yan J, Zhao H, Kuriyagawa T. Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol. 2009;24:2–11.
  • Chavoshi SZ, Luo X. An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comp Mat Sci. 2016;113:1–10. doi: 10.1016/j.commatsci.2015.11.027
  • Chavoshi SZ, Goel S, Luo X. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation. J Manuf Process. 2016;23:201–210. doi: 10.1016/j.jmapro.2016.06.009
  • Durazo-Cardenas I, Shore P, Luo X, et al. 3D characterisation of tool wear whilst diamond turning silicon. Wear. 2007;262:340–349. doi: 10.1016/j.wear.2006.05.022
  • Xu F, Fang F, Zhang X. Effects of recovery and side flow on surface generation in nano-cutting of single crystal silicon. Comp Mat Sci. 2018;143:133–142. doi: 10.1016/j.commatsci.2017.11.002
  • Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91:4950–4963. doi: 10.1021/j100303a014
  • Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si(001). Comput Phys Commun. 2016;205:13–21. doi: 10.1016/j.cpc.2016.04.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.