2,923
Views
101
CrossRef citations to date
0
Altmetric
Articles

A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 136-154 | Received 06 Jun 2019, Accepted 04 Oct 2019, Published online: 20 Oct 2019

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896
  • Jang BZ, Zhamu A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci. 2008;43:5092–5101. doi: 10.1007/s10853-008-2755-2
  • Fukushima H, Drzal LT, Rook BP, et al. Thermalconductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim. 2006;85:235–238. doi: 10.1007/s10973-005-7344-x
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068
  • Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene. Appl Phys Lett. 2007;91:163513. doi: 10.1063/1.2789673
  • Tsai J-L, Tu J-F. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des. 2010;31:194–199. doi: 10.1016/j.matdes.2009.06.032
  • Sharma S, Kumar P, Chandra R. Mechanical and thermal properties of graphene–carbon nanotube-reinforced metal matrix composites: a molecular dynamics study. J Compos Mater. 2016;51:3299–3313. doi: 10.1177/0021998316682363
  • Cho J, Luo JJ, Daniel IM. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos Sci Technol. 2007;67:2399–2407. doi: 10.1016/j.compscitech.2007.01.006
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–240. doi: 10.1039/B917103G
  • Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010
  • Chandrasekaran S, Sato N, Tölle F, et al. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol. 2014;97:90–99. doi: 10.1016/j.compscitech.2014.03.014
  • Suk JW, Piner RD, An J, et al. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010;4:6557–6564. doi: 10.1021/nn101781v
  • Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008;8:2045–2049. doi: 10.1021/nl801384y
  • Rajasekaran G, Parashar A. Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects. Diam Relat Mater. 2017;74:90–99. doi: 10.1016/j.diamond.2017.02.015
  • Mokhalingam A, Kumar D, Srivastava A. Mechanical behaviour of graphene reinforced aluminum nano composites. Mater Today Proc. 2017;4:3952–3958. doi: 10.1016/j.matpr.2017.02.295
  • Alian AR, Dewapriya MAN, Meguid SA. Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites. Mater Des. 2017;124:47–57. doi: 10.1016/j.matdes.2017.03.052
  • Giannopoulos GI, Kallivokas IG. Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem Anal Des. 2014;90:31–40. doi: 10.1016/j.finel.2014.06.008
  • Zhang J, Jiang D. Molecular dynamics simulation of mechanical performance of graphene/graphene oxide paper based polymer composites. Carbon. 2014;67:784–791. doi: 10.1016/j.carbon.2013.10.078
  • Zhang YY, Wang CM, Cheng Y, et al. Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon. 2011;49:4511–4517. doi: 10.1016/j.carbon.2011.06.058
  • Baykasoglu C, Mugan A. Dynamic analysis of single-layer graphene sheets. Comput Mater Sci. 2012;55:228–236. doi: 10.1016/j.commatsci.2011.12.007
  • Lv C, Xue Q, Xia D, et al. Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl Surf Sci. 2012;258:2077–2082. doi: 10.1016/j.apsusc.2011.04.056
  • Chandra Y, Chowdhury R, Scarpa F, et al. Vibration frequency of graphene based composites: a multiscale approach. Mater Sci Eng B. 2012;177:303–310. doi: 10.1016/j.mseb.2011.12.024
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Mortazavi B, Rémond Y, Ahzi S, et al. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Comput Mater Sci. 2012;53:298–302. doi: 10.1016/j.commatsci.2011.08.018
  • Mortazavi B, Hassouna F, Laachachi A, et al. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochim Acta. 2013;552:106–113. doi: 10.1016/j.tca.2012.11.017
  • Konatham D, Papavassiliou DV, Striolo A. Thermal boundary resistance at the graphene–graphene interface estimated by molecular dynamics simulations. Chem Phys Lett. 2012;527:47–50. doi: 10.1016/j.cplett.2012.01.007
  • Jang C, Lacy TE, Gwaltney SR, et al. Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations. Polymer. 2013;54:3282–3289. doi: 10.1016/j.polymer.2013.04.035
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Mortazavi B, Benzerara O, Meyer H, et al. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon. 2013;60:356–365. doi: 10.1016/j.carbon.2013.04.048
  • Zhang YY, Gu YT. Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput Mater Sci. 2013;71:197–200. doi: 10.1016/j.commatsci.2013.01.032
  • Rahman R, Haque A. Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Composit Part B Eng. 2013;54:353–364. doi: 10.1016/j.compositesb.2013.05.034
  • Chandra Y, Scarpa F, Chowdhury R, et al. Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites. Composit Part A Appl Sci Manuf. 2013;46:147–153. doi: 10.1016/j.compositesa.2012.11.006
  • Shiu S-C, Tsai J-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composit Part B Eng. 2014;56:691–697. doi: 10.1016/j.compositesb.2013.09.007
  • Yuan J, Liew KM. Effects of grafted carboxyl groups on structural stability and elastic properties of graphene. Mater Chem Phys. 2014;145:313–319. doi: 10.1016/j.matchemphys.2014.02.014
  • Liu F, Hu N, Ning H, et al. Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon. 2017;115:694–700. doi: 10.1016/j.carbon.2017.01.039
  • Johnston JP, Koo B, Subramanian N, et al. Modeling the molecular structure of the carbon fiber/polymer interphase for multiscale analysis of composites. Composit Part B Eng. 2017;111:27–36. doi: 10.1016/j.compositesb.2016.12.008
  • Shokrieh Z, Seifi M, Shokrieh MM. Simulation of stiffness of randomly-distributed-graphene/epoxy nanocomposites using a combined finite element-micromechanics method. Mech Mater. 2017;115:16–21. doi: 10.1016/j.mechmat.2017.09.006
  • Papadopoulos V, Seventekidis P, Sotiropoulos G. Stochastic multiscale modeling of graphene reinforced composites. Eng Struct. 2017;145:176–189. doi: 10.1016/j.engstruct.2017.05.015
  • Lin F, Xiang Y, Shen H-S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – a molecular dynamics simulation. Composit Part B Eng. 2017;111:261–269. doi: 10.1016/j.compositesb.2016.12.004
  • He Y, Huang F, Li H, et al. Tensile mechanical properties of nano-layered copper/graphene composite. Phys E Low Dimen Syst Nanostruct. 2017;87:233–236. doi: 10.1016/j.physe.2016.10.044
  • Bigdeli MB, Fasano M. Thermal transmittance in graphene based networks for polymer matrix composites. Int J Thermal Sci. 2017;117:98–105. doi: 10.1016/j.ijthermalsci.2017.03.009
  • Sun X, Fu Z, Xia M, et al. Effects of vacancy defect on the tensile behavior of graphene. Theoret Appl Mech Lett. 2014;4:051002. doi: 10.1063/2.1405102
  • Dai G, Mishnaevsky L. Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Comput Mater Sci. 2014;95:684–692. doi: 10.1016/j.commatsci.2014.08.011
  • Liu B, Baimova JA, Reddy CD, et al. Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon. 2014;79:236–244. doi: 10.1016/j.carbon.2014.07.064
  • Jang H-K, Kim H-I, Dodge T, et al. Interfacial shear strength of reduced graphene oxide polymer composites. Carbon. 2014;77:390–397. doi: 10.1016/j.carbon.2014.05.042
  • Sharma K, Shukla M. Molecular modeling of the mechanical behavior of carbon fiber-amine functionalized multiwall carbon nanotube/epoxy composites. New Carbon Mater. 2014;29:132–142. doi: 10.1016/S1872-5805(14)60131-1
  • Sarrami-Foroushani S, Azhari M. Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects. Phys E Low Dimens Syst Nanostruct. 2014;57:83–95. doi: 10.1016/j.physe.2013.11.002
  • Shokrieh MM, Esmkhani M, Shokrieh Z, et al. Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method. Comput Mater Sci. 2014;92:444–450. doi: 10.1016/j.commatsci.2014.06.002
  • Chu Y, Ragab T, Basaran C. The size effect in mechanical properties of finite-sized graphene nanoribbon. Comput Mater Sci. 2014;81:269–274. doi: 10.1016/j.commatsci.2013.08.016
  • Lin S, Buehler MJ. Thermal transport in monolayer graphene oxide: atomistic insights into phonon engineering through surface chemistry. Carbon. 2014;77:351–359. doi: 10.1016/j.carbon.2014.05.038
  • Malyi OI, Sopiha K, Kulish VV, et al. A computational study of Na behavior on graphene. Appl Surf Sci. 2015;333:235–243. doi: 10.1016/j.apsusc.2015.01.236
  • Tserpes KI, Vatistas I. Buckling analysis of pristine and defected graphene. Mech Res Commun. 2015;64:50–56. doi: 10.1016/j.mechrescom.2015.01.003
  • Galashev AY. Computer study of the removal of Cu from the graphene surface using Ar clusters. Comput Mater Sci. 2015;98:123–128. doi: 10.1016/j.commatsci.2014.11.002
  • Wang M, Hu N, Zhou L, et al. Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains. Carbon. 2015;85:414–421. doi: 10.1016/j.carbon.2015.01.009
  • Dewapriya MAN, Rajapakse RKND, Nigam N. Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene–polymer nanocomposite. Carbon. 2015;93:830–842. doi: 10.1016/j.carbon.2015.05.101
  • Javan Nikkhah S, Moghbeli MR, Hashemianzadeh SM. Investigation of the interface between polyethylene and functionalized graphene: a computer simulation study. Curr Appl Phys. 2015;15:1188–1199. doi: 10.1016/j.cap.2015.07.007
  • Fang T-H, Chang W-J, Feng Y-L. Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations. Appl Surf Sci. 2015;356:221–225. doi: 10.1016/j.apsusc.2015.07.210
  • Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Comput Mater Sci. 2015;99:285–289. doi: 10.1016/j.commatsci.2014.12.036
  • Spanos KN, Georgantzinos SK, Anifantis NK. Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos Struct. 2015;132:536–544. doi: 10.1016/j.compstruct.2015.05.078
  • Fereidoon A, Aleaghaee S, Taraghi I. Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Comput Mater Sci. 2015;102:220–227. doi: 10.1016/j.commatsci.2015.02.044
  • Liu F, Hu N, Ning H, et al. Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput Mater Sci. 2015;108:160–167. doi: 10.1016/j.commatsci.2015.06.023
  • Huang Y-R, Chuang P-H, Chen C-L. Molecular-dynamics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites. Int J Heat Mass Transf. 2015;91:45–51. doi: 10.1016/j.ijheatmasstransfer.2015.07.110
  • Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon. 2015;85:1–7. doi: 10.1016/j.carbon.2014.12.046
  • Saha B, Furmanchuk A, Dzenis Y, et al. Multi-step mechanism of carbonization in templated polyacrylonitrile derived fibers: ReaxFF model uncovers origins of graphite alignment. Carbon. 2015;94:694–704. doi: 10.1016/j.carbon.2015.07.048
  • Nazemnezhad R. Nonlocal Timoshenko beam model for considering shear effect of van der Waals interactions on free vibration of multilayer graphene nanoribbons. Compos Struct. 2015;133:522–528. doi: 10.1016/j.compstruct.2015.07.108
  • Xiang Y, Shen H-S. Shear buckling of rippled graphene by molecular dynamics simulation. Mater Today Communi. 2015;3:149–155. doi: 10.1016/j.mtcomm.2015.01.001
  • Karličić D, Cajić M, Kozić P, et al. Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium. Compos Struct. 2015;131:672–681. doi: 10.1016/j.compstruct.2015.05.058
  • Yuan K, Sun M, Wang Z, et al. Tunable thermal rectification in silicon-functionalized graphene nanoribbons by molecular dynamics simulation. Int J Thermal Sci. 2015;98:24–31. doi: 10.1016/j.ijthermalsci.2015.07.004
  • Bayrak O, Ionita M, Demirci E, et al. Effect of morphological state of graphene on mechanical properties of nanocomposites. J Mater Sci. 2016;51:4037–4046. doi: 10.1007/s10853-016-9722-0
  • Yuan Z, Lu Z, Yang Z, et al. A criterion for the normal properties of graphene/polymer interface. Comput Mater Sci. 2016;120:13–20. doi: 10.1016/j.commatsci.2016.04.006
  • Shandiz SA, Montazeri A. A novel MD-based procedure to obtain the interphase Young’s modulus in nanocomposites. Comput Mater Sci. 2016;113:104–111. doi: 10.1016/j.commatsci.2015.11.036
  • Sadeghzadeh S. Computational design of graphene sheets for withstanding the impact of ultrafast projectiles. J Mol Graph Model. 2016;70:196–211. doi: 10.1016/j.jmgm.2016.10.001
  • Dewapriya MAN, Rajapakse RKND. Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos Part B Eng. 2016;98:339–349. doi: 10.1016/j.compositesb.2016.04.052
  • Shen X, Wang Z, Wu Y, et al. Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon. 2016;108:412–422. doi: 10.1016/j.carbon.2016.07.042
  • Wang Y, Yang C, Mai Y-W, et al. Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites. Carbon. 2016;102:311–318. doi: 10.1016/j.carbon.2016.02.069
  • Hu Y, Ding JL. Effects of morphologies of carbon nanofillers on the interfacial and deformation behavior of polymer nanocomposites – a molecular dynamics study. Carbon. 2016;107:510–524. doi: 10.1016/j.carbon.2016.06.031
  • Spanos KN, Anifantis NK. Finite element prediction of stress transfer in graphene nanocomposites: the interface effect. Compos Struct. 2016;154:269–276. doi: 10.1016/j.compstruct.2016.07.058
  • Brochard L, Tejada IG, Sab K. From yield to fracture, failure initiation captured by molecular simulation. J Mech Phys Solids. 2016;95:632–646. doi: 10.1016/j.jmps.2016.05.005
  • Jin Y, Duan F, Mu X. Functionalization enhancement on interfacial shear strength between graphene and polyethylene. Appl Surf Sci. 2016;387:1100–1109. doi: 10.1016/j.apsusc.2016.07.047
  • Roussou R-E, Karatasos K. Graphene/poly(ethylene glycol) nanocomposites as studied by molecular dynamics simulations. Mater Des. 2016;97:163–174. doi: 10.1016/j.matdes.2016.02.078
  • Wang T-Y, Tsai J-L. Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Comput Mater Sci. 2016;122:272–280. doi: 10.1016/j.commatsci.2016.05.039
  • Polfus JM, Løvvik OM, Rørvik PM, et al. Nanocomposites of few-layer graphene oxide and alumina by density functional theory calculations. J Eur Ceram Soc. 2016;36:719–724. doi: 10.1016/j.jeurceramsoc.2015.11.009
  • Malakouti M, Montazeri A. Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic-scale finite element method. Superlattices Microstruct. 2016;94:1–12. doi: 10.1016/j.spmi.2016.03.049
  • Jeyranpour F, Alahyarizadeh G, Minuchehr A. The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation – a comparative study. Polymer. 2016;88:9–18. doi: 10.1016/j.polymer.2016.02.018
  • Gao Y, Yang W, Xu B. Unusual thermal conductivity behavior of serpentine graphene nanoribbons under tensile strain. Carbon. 2016;96:513–521. doi: 10.1016/j.carbon.2015.09.102
  • Jalali SK, Beigrezaee MJ, Pugno NM. Atomistic evaluation of the stress concentration factor of graphene sheets having circular holes. Phys E Low Dimen Syst Nanostruct. 2017;93:318–323. doi: 10.1016/j.physe.2017.06.031
  • Rafiee R, Eskandariyun A. Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach. Phys E Low Dimen Syst Nanostruct. 2017;90:42–48. doi: 10.1016/j.physe.2017.03.006
  • Miraftab R, Karimi B, Bahlakeh G, et al. Complementary experimental and quantum mechanics approaches for exploring the mechanical characteristics of epoxy composites loaded with graphene oxide-polyaniline nanofibers. J Indus Eng Chem. 2017;53:348–359. doi: 10.1016/j.jiec.2017.05.006
  • Vo VS, Nguyen V-H, Mahouche-Chergui S, et al. From atomistic structure to thermodynamics and mechanical properties of epoxy/clay nanocomposites: investigation by molecular dynamics simulations. Comput Mater Sci. 2017;139:191–201. doi: 10.1016/j.commatsci.2017.07.024
  • Kumar S. Graphene engendered 2-D structural morphology of aluminium atoms: molecular dynamics simulation study. Mater Chem Phys. 2017;202:329–339. doi: 10.1016/j.matchemphys.2017.09.043
  • Gao J-G, Zhao H, Sun W-F. Molecular dynamics simulation study of parallel orientation structure and gas transport in graphite-nanoplatelet/polyethylene composites. Mater Today Commun. 2017;13:57–64. doi: 10.1016/j.mtcomm.2017.08.004
  • Kumar A, Sharma K, Dixit AR. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci. 2019;54(8):5992–6026. doi: 10.1007/s10853-018-03244-3
  • Zhao H, Min K, Aluru N. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 2009;9:3012–3015. doi: 10.1021/nl901448z
  • Shi G, He YL, Zhang JW, et al. Tensile properties of carbon nanoring linked graphene sheets: a molecular dynamics Investigation. Material Science Foram. 2018;913:607–613. doi: 10.4028/www.scientific.net/MSF.913.607
  • Pei Q-X, Zhang Y-W, Shenoy VB. Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology. 2010;21:115709. doi: 10.1088/0957-4484/21/11/115709
  • Shah P, Batra R. Elastic moduli of covalently functionalized single layer graphene sheets. Comput Mater Sci. 2014;95:637–650. doi: 10.1016/j.commatsci.2014.07.050
  • Zheng Q, Geng Y, Wang S, et al. Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon. 2010;48:4315–4322. doi: 10.1016/j.carbon.2010.07.044
  • Muniz AR, Machado AS, Maroudas D. Mechanical behavior of interlayer-bonded nanostructures obtained from bilayer graphene. Carbon. 2015;81:663–677. doi: 10.1016/j.carbon.2014.10.003
  • Gupta S, Batra R. Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J Comput Theor Nanosci. 2010;7:2151–2164. doi: 10.1166/jctn.2010.1598
  • Zhang X, Liu S, Liu H, et al. Molecular dynamics simulation of the mechanical properties of multilayer graphene oxide nanosheets. RSC Adv. 2017;7:55005–55011. doi: 10.1039/C7RA10273A
  • He L, Guo S, Lei J, et al. The effect of Stone–thrower–wales defects on mechanical properties of graphene sheets – a molecular dynamics study. Carbon. 2014;75:124–132. doi: 10.1016/j.carbon.2014.03.044
  • Li H, Zhang H, Cheng X. The effect of temperature, defect and strain rate on the mechanical property of multi-layer graphene: coarse-grained molecular dynamics study. Phys E Low Dimen Syst Nanostruct. 2017;85:97–102. doi: 10.1016/j.physe.2016.07.003
  • Savvas D, Stefanou G. Determination of random material properties of graphene sheets with different types of defects. Compos Part B Eng. 2018;143:47–54. doi: 10.1016/j.compositesb.2018.01.008
  • Qin X, Yan W, Guo X, et al. Effects of area, aspect ratio and orientation of rectangular nanohole on the tensile strength of defective graphene – a molecular dynamics study. RSC Adv. 2018;8:17034–17043. doi: 10.1039/C8RA02415D
  • Thomas S, Ajith K. Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet. Proc Mater Sci. 2014;5:489–498. doi: 10.1016/j.mspro.2014.07.292
  • Shi G, Zhang J, He Y, et al. Thermal conductivity of carbon nanoring linked graphene sheets: A molecular dynamics investigation. Chin Phys B. 2017;26:106502. doi: 10.1088/1674-1056/26/10/106502
  • Ebrahimi S, Azizi M. The effect of high concentrations and orientations of stone – wales defects on the thermal conductivity of graphene nanoribbons. Mol Simul. 2018;44:236–242. doi: 10.1080/08927022.2017.1366654
  • Ng TY, Yeo JJ, Liu Z. A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed stone–thrower–wales defects. Carbon. 2012;50:4887–4893. doi: 10.1016/j.carbon.2012.06.017
  • Yeo JJ, Liu Z, Ng TY. Comparing the effects of dispersed stone–thrower–wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology. 2012;23:385702. doi: 10.1088/0957-4484/23/38/385702
  • Li M, Deng T, Zheng B, et al. Effect of defects on the mechanical and thermal properties of graphene. Nanomaterials. 2019;9:347. doi: 10.3390/nano9030347
  • Rissanou AN, Harmandaris V. Dynamics of various polymer–graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter. 2014;10:2876–2888. doi: 10.1039/c3sm52688g
  • Rissanou AN, Harmandaris V. Structure and dynamics of poly (methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations. J Nanoparticle Res. 2013;15:1589. doi: 10.1007/s11051-013-1589-2
  • Ramanathan T, Abdala A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327. doi: 10.1038/nnano.2008.96
  • Gulde M, Rissanou AN, Harmandaris V, et al. Dynamics and structure of monolayer polymer crystallites on graphene. Nano Lett. 2016;16:6994–7000. doi: 10.1021/acs.nanolett.6b03079
  • Rissanou A, Power A, Harmandaris V. Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymers. 2015;7:390–417. doi: 10.3390/polym7030390
  • Mohammadzadeh Honarvar F, Pourabbas B, Salami Hosseini M, et al. Molecular dynamics simulation: the effect of graphene on the mechanical properties of epoxy based photoresist: SU8. Sci Iran. 2018;25:1879–1890.
  • Giannopoulos GI. Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput Mater Sci. 2012;53:388–395. doi: 10.1016/j.commatsci.2011.08.027
  • Guo Z, Song L, Chai GB, et al. Multiscale finite element analyses on mechanical properties of graphene-reinforced composites. Mech Adv Mater Struct. 2019;26(20):1735–1742. doi: 10.1080/15376494.2018.1447176
  • Wang T-Y, Tseng P-Y, Tsai J-L. Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. J Compos Mater. 2019;53(6):835–847. doi: 10.1177/0021998318791681
  • Shokrieh M, Shokrieh Z, Hashemianzadeh S. A novel combined molecular dynamics–micromechanics method for modeling of stiffness of graphene/epoxy nanocomposites with randomly distributed graphene. Mater Des. 2014;64:96–101. doi: 10.1016/j.matdes.2014.07.031
  • Van Es M, Xiqiao F, Van Turnhout J, et al. Comparing polymer-clay nanocomposites with conventional composites using composite modeling. In: Al-Malaika S, Golovoy AW, editors. Specially polymer additives: principles and applications. Chapter 21. Malden (MA): Blackwell Science; 2001.
  • Derek H. An introduction to composite materials. Cambridge: Cambridge University Press; 1981.
  • Ji X-Y, Cao Y-P, Feng X-Q. Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model Simul Mater Sci Eng. 2010;18:045005. doi: 10.1088/0965-0393/18/4/045005
  • Rissanou A, Bacova P, Harmandaris V. Properties of nanographene in polymer nanocomposites through molecular simulations: dynamics and anisotropic Brownian motion. Physical Chemistry Chemical Physics. 2019. DOI:10.1039/C9CP02074H.
  • Li Z, Young RJ, Wilson NR, et al. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Compos Sci Technol. 2016;123:125–133. doi: 10.1016/j.compscitech.2015.12.005
  • Sun Y, Chen L, Cui L, et al. Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields. Comput Mater Sci. 2018;143:240–247. doi: 10.1016/j.commatsci.2017.11.007
  • Shukla MK, Kumar A, Yadav A, et al. Improved mechanical properties of graphene oxide reinforced cross-linked epoxy nanocomposites: a molecular dynamics approach. Mater Today Proc. 2019;11:679–685. doi: 10.1016/j.matpr.2019.03.027
  • Jeyranpour F, Alahyarizadeh G, Arab B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J Mol Graph Model. 2015;62:157–164. doi: 10.1016/j.jmgm.2015.09.012
  • Liu Y, Xie B, Zhang Z, et al. Mechanical properties of graphene papers. J Mech Phys Solids. 2012;60:591–605. doi: 10.1016/j.jmps.2012.01.002
  • Rahman R. The role of graphene in enhancing the stiffness of polymeric material: a molecular modeling approach. J Appl Phys. 2013;113:243503. doi: 10.1063/1.4812275
  • Yu S, Yang S, Cho M. Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer. 2009;50:945–952. doi: 10.1016/j.polymer.2008.11.054
  • Liu F, Hu N, Zhang J, et al. The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Adv. 2016;6:66658–66664. doi: 10.1039/C6RA09292F
  • Park C, Yun GJ. Characterizatioikn of interfacial properties of graphene-reinforced polymer nanocomposites by molecular dynamics-shear deformation model. J Appl Mech. 2018;85:091007. doi: 10.1115/1.4040480
  • Singh PK, Sharma K, Kumar A, et al. Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater. 2017;51:671–680. doi: 10.1177/0021998316649781
  • Xue Q, Lv C, Shan M, et al. Glass transition temperature of functionalized graphene–polymer composites. Comput Mater Sci. 2013;71:66–71. doi: 10.1016/j.commatsci.2013.01.009
  • Yadav A, Kumar A, Singh PK, et al. Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr. 2018;186:106–114. doi: 10.1080/10584587.2017.1370331
  • Li Y, Wang S, Wang Q. Molecular dynamics simulations of thermal properties of polymer composites enhanced by cross-linked graphene sheets. Acta Mech Solid Sin. 2018;31:673–682. doi: 10.1007/s10338-018-0033-7
  • Wang M, Lai ZB, Galpaya D, et al. Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites. J Appl Phys. 2014;115:123520. doi: 10.1063/1.4870170
  • Lv C, Xue Q, Xia D, et al. Effect of chemisorption on the interfacial bonding characteristics of graphene− polymer composites. J Phys Chem C. 2010;114:6588–6594. doi: 10.1021/jp100110n
  • Singh A, Kumar D. Effect of functionalization on the elastic behavior of graphene nanoplatelet-PE nanocomposites with interface consideration using a multiscale approach. Mech Mater. 2019;132:18–30. doi: 10.1016/j.mechmat.2019.02.008
  • Zhang X, Wu L, Wang J. Distinct mechanical properties of polymer/polymer-grafting-graphene nanocomposites. Macromol Chem Phys. 2018;219:1800161. doi: 10.1002/macp.201800161
  • Bačová P, Rissanou AN, Harmandaris V. Edge-functionalized graphene as a nanofiller: molecular dynamics simulation study. Macromolecules. 2015;48:9024–9038. doi: 10.1021/acs.macromol.5b01782
  • Behbahani AF, Motlagh GH, Vaez Allaei SM, et al. Structure and conformation of stereoregular poly (methyl methacrylate) chains adsorbed on graphene oxide and reduced graphene oxide via atomistic simulations. Macromolecules. 2019;52(10):3825–3838. doi: 10.1021/acs.macromol.9b00574
  • Behbahani AF, Vaez Allaei SM, Motlagh GH, et al. Structure, dynamics, and apparent glass transition of stereoregular poly (methyl methacrylate)/graphene interfaces through atomistic simulations. Macromolecules. 2018;51:7518–7532. doi: 10.1021/acs.macromol.8b01160
  • Skountzos EN, Anastassiou A, Mavrantzas VG, et al. Determination of the mechanical properties of a poly (methyl methacrylate) nanocomposite with functionalized graphene sheets through detailed atomistic simulations. Macromolecules. 2014;47:8072–8088. doi: 10.1021/ma5017693
  • Kumar A, Singh PK, Sharma K, et al. Evaluation of elastic moduli for different patterns of stone-thrower-wales defect in carbon nanotubes/epoxy composites. Mater Today Proc. 2017;4:9423–9428. doi: 10.1016/j.matpr.2017.06.197
  • Kumar A, Sharma K, Singh PK, et al. Mechanical characterization of vacancy defective single-walled carbon nanotube/epoxy composites. Mater Today Proc. 2017;4:4013–4021. doi: 10.1016/j.matpr.2017.02.303
  • Liu F, Hu N, Han M, et al. Investigation of interfacial mechanical properties of graphene-polymer nanocomposites. Mol Simul. 2016;42:1165–1170. doi: 10.1080/08927022.2016.1154550
  • Li M, Zhou H, Zhang Y, et al. The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv. 2017;7:46101–46108. doi: 10.1039/C7RA08243F
  • Sun R, Li L, Feng C, et al. Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur Polym J. 2018;98:475–482. doi: 10.1016/j.eurpolymj.2017.11.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.