574
Views
17
CrossRef citations to date
0
Altmetric
Articles

Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors

ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 169-185 | Received 11 Jul 2019, Accepted 14 Oct 2019, Published online: 27 Oct 2019

References

  • Kumar D, Ganeshpurkar A, Kumar D, et al. Secretase inhibitors for the treatment of Alzheimer's disease: long road ahead. Eur J Med Chem. 2018 Mar 25;148:436–452.
  • Available from: https://www.who.int/features/factfiles/dementia/en/ [updated April 2017; visited on 4-09-2019].
  • Kumar A, Singh A. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological Reports. 2015;67(2):195–203.
  • Ganeshpurkar A, Rayala S, Kumar D, et al. Protein–Protein interaction and aggregation inhibitors in Alzheimer’s disease. Curr Top Med Chem. 2019;19:1–31.
  • Singh M, Kaur M, Kukreja H, et al. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem. 2013;70:165–188.
  • Bourne Y, Taylor P, Bougis PE, et al. Crystal structure of mouse acetylcholinesterase a peripheral site-occluding loop in a tetrameric assembly. Journal of Biological Chemistry. 1999;274(5):2963–2970.
  • Fernandez HL, Moreno RD, Inestrosa NC. Tetrameric (G4) acetylcholinesterase: structure, localization, and physiological regulation. J. Neurochem. 1996;66(4):1335–1346.
  • Massoulié J, Sussman J, Bon S, et al. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog. Brain Res. 1993;98:139–146.
  • Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu. Rev. Neurosci. 1982;5(1):57–106.
  • Davies P. A critical Review of the role of the cholinergic system in human memory and Cognitiona. Ann. N. Y. Acad. Sci. 1985;444(1):212–217.
  • Bekris LM, Yu C-E, Bird TD, et al. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23(4):213–227.
  • Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nature Reviews Neuroscience. 2001;2(4):294–302.
  • Johnson G, Moore S. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12(2):217–225.
  • Pakaski M, Kasa P. Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein. Current Drug Targets-CNS & Neurological Disorders. 2003;2(3):163–171.
  • Verhoeff NPL. Acetylcholinergic neurotransmission and the β-amyloid cascade: implications for Alzheimer’s disease. Expert Rev Neurother. 2005;5(2):277–284.
  • Lahiri D, Farlow M, Nurnberger J, et al. Effects of cholinesterase inhibitors on the secretion of beta-amyloid precursor protein in cell cultures. Ann. N. Y. Acad. Sci. 1997;826(1):416–421.
  • Inestrosa NC, Alarcón R. Molecular interactions of acetylcholinesterase with senile plaques. J. Physiol. Paris. 1998;92(5):341–344.
  • Campos EO, Alvarez A, Inestrosa NC. Brain acetylcholinesterase promotes amyloid-β-peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochem. Res. 1998;23(2):135–140.
  • Kumar D, Gupta SK, Ganeshpurkar A, et al. Development of piperazinediones as dual inhibitor for treatment of Alzheimer's disease. Eur J Med Chem. 2018;150:87–101.
  • Gutti G, Kakarla R, Kumar D, et al. Discovery of novel series of 2-substituted benzo [d] oxazol-5-amine derivatives as multi-target directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem. 2019;182:111613.
  • Kumar D, Gupta SK, Ganeshpurkar A, et al. Biological profiling of piperazinediones for the management of anxiety. Pharmacology Biochemistry and Behavior. 2019;176:63–71.
  • Gutti G, Kumar D, Paliwal P, et al. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease. Bioorg. Chem. 2019;90:103080.
  • Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55(22):10282–10286.
  • Langer T, Hoffmann RD. Pharmacophore modelling: applications in drug discovery. Expert Opin Drug Discov. 2006;1(3):261–267.
  • Wolber G, Langer T. Ligandscout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45(1):160–169.
  • Sunseri J, Koes DR. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 2016;44(W1):W442–W448.
  • Jana S, Ganeshpurkar A, Singh SK. Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors. RSC Adv. 2018;8(69):39477–39495.
  • Saubern S, Guha R, Baell JB. KNIME workflow to Assess PAINS filters in SMARTS Format. comparison of RDKit and Indigo Cheminformatics Libraries. Mol Inform. 2011;30(10):847–850.
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx: the Journal of the American Society for Experimental NeuroTherapeutics. 2005;2(4):541–553.
  • Berthold MR, Cebron N, Dill F, et al. KNIME: The Konstanz Information Miner. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008; (Data Analysis, Machine Learning and Applications).
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605–1612.
  • Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252–W258.
  • Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283–291.
  • Lovell SC, Davis IW, Arendall III WB, et al. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins: structure. Function, and Bioinformatics. 2003;50(3):437–450.
  • Williams CJ, Headd JJ, Moriarty NW, et al. Molprobity: more and better reference data for improved all-atom structure validation. Protein Science: a Publication of the Protein Society. 2018 Jan;27(1):293–315.
  • Biasini M, Benkert P, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2010;27(3):343–350.
  • Borges NM, Sartori GR, Ribeiro JFR, et al. Similarity search combined with docking and molecular dynamics for novel hAChE inhibitor scaffolds. J Mol Model. 2018 Jan 13;24(1):41.
  • Ali MR, Sadoqi M, Møller SG, et al. Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies. Journal of Molecular Graphics and Modelling. 2017 Sep 01;76:36–42.
  • O'Boyle NM, Banck M, James CA, et al. Open babel: An open chemical toolbox [journal article]. J Cheminform. 2011 Oct 07;3(1):33.
  • Ganeshpurkar A, Kumar D, Singh SK. Design, synthesis and collagenase inhibitory activity of some novel phenylglycine derivatives as metalloproteinase inhibitors. Int. J. Biol. Macromol. 2018 Feb 01;107:1491–1500.
  • Umre R, Ganeshpurkar A, Ganeshpurkar A, et al. In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future Journal of Pharmaceutical Sciences. 2018 Dec 01;4(2):248–253.
  • Miller BR, McGee TD, Swails JM, et al. MMPBSA.py: An Efficient Program for End-state free energy calculations. J Chem Theory Comput. 2012 Sep 11;8(9):3314–3321.
  • Onufriev A, Bashford D, Case DA. Modification of the Generalized Born model suitable for Macromolecules. The Journal of Physical Chemistry B. 2000 Apr 01;104(15):3712–3720.
  • Singh R, Ganeshpurkar A, Kumar D, et al. Identifying potential GluN2B subunit containing N-methyl-d-aspartate receptor inhibitors: An integrative in silico and molecular modeling approach. Journal of Biomolecular Structure and Dynamics. 2019; doi:10.1080/07391102.2019.1635530.
  • Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem. 1999 Jan 30;20(2):217–230.
  • Sugimoto H, Yamanishi Y, Iimura Y, et al. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr. Med. Chem. 2000 Mar;7(3):303–339.
  • Seltzer B. Donepezil: a review. Expert Opin Drug Metab Toxicol. 2005 Oct 01;1(3):527–536.
  • Dahlin JL, Nissink JWM, Strasser JM, et al. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 2015;58(5):2091–2113.
  • Chen VB, Arendall WB III, Headd JJ, et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D. 2010;66(1):12–21.
  • Klebe G, Li H, Jensen JH, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35(suppl_2):W522–W525.
  • Morris GM, Huey R, Lindstrom W, et al. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.
  • Hevener KE, Zhao W, Ball DM, et al. Validation of molecular docking Programs for virtual screening against Dihydropteroate Synthase. J Chem Inf Model. 2009 2009 Feb 23;49(2):444–460.
  • Shoichet BK, Stroud RM, Santi DV, et al. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259(5100):1445–1450.
  • Perola E, Xu K, Kollmeyer TM, et al. Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J. Med. Chem. 2000;43(3):401–408.
  • Schapira M, Abagyan R, Totrov M. Nuclear hormone receptor targeted virtual screening. J. Med. Chem. 2003;46(14):3045–3059.
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–1662.
  • Lee S, Park S, Lee I, et al. PreAD-MET Ver. v2. 0. Seoul: BMDRC; 2007.
  • Ma X-L, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Vol. 26. 2005.
  • Cai Y, Schiffer CA. Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV. J Chem Theory Comput. 2010;6(4):1358–1368.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013 Jul 09;9(7):3084–3095.
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec 01;22(12):2577–2637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.