254
Views
7
CrossRef citations to date
0
Altmetric
Articles

Insights into the molecular basis of acetylcholinesterase inhibition by xanthones: an integrative in silico and in vitro approach

, , , , , , & show all
Pages 253-261 | Received 25 Sep 2018, Accepted 30 Oct 2019, Published online: 15 Jan 2020

References

  • Corey-Bloom JP. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psyopharmacol. 1998;1:55–65.
  • Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology. 2000;54:2269. doi: 10.1212/WNL.54.12.2269
  • Hansen RA, Gartlehner G, Webb AP, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging. 2008;3:211-225.
  • Stahl SM. The new cholinesterase inhibitors for Alzheimer's disease, part 2: illustrating their mechanisms of action. J Clin Psychiatry. 2000;61:813–814. doi: 10.4088/JCP.v61n1101
  • Sugimoto H, Yamanishi Y, Iimura Y, et al. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr Med Chem. 2000;7:303–339. doi: 10.2174/0929867003375191
  • Namba T. Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull World Health Organ. 1971;44:289–307.
  • Orhan I, Şener B, Choudhary M, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol. 2004;91:57–60. doi: 10.1016/j.jep.2003.11.016
  • Sugimoto H, Iimura Y, Yamanishi Y, et al. Synthesis and anti-acetylcholinesterase activity of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine hydrochloride (E2020) and related compounds. Bioorg Med Chem Lett. 1992;2:871–876. doi: 10.1016/S0960-894X(00)80547-8
  • Singh J, Chuaqui CE, Boriack-Sjodin PA, et al. Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). Bioorg Med Chem Lett. 2003;13:4355–4359. Epub 2003/12/04. doi: 10.1016/j.bmcl.2003.09.028
  • Zeev-Ben-Mordehai T, Silman I, Sussman JL. Acetylcholinesterase in motion: visualizing conformational changes in crystal structures by a morphing procedure. Biopolymers. 2003;68:395–406. Epub 2003/02/26. doi: 10.1002/bip.10287
  • Dvir H, Silman I, Harel M, et al. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042
  • Xu Y, Colletier J-P, Weik M, et al. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys J. 2008;95:2500–2511. doi: 10.1529/biophysj.108.129601
  • Colletier J-P, Fournier D, Greenblatt HM, et al. Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J. 2006;25:2746–2756. doi: 10.1038/sj.emboj.7601175
  • Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991;253:872–879. Epub 1991/08/23. doi: 10.1126/science.1678899
  • Xu Y, Colletier JP, Jiang H, et al. Induced-fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structure-based drug design. Protein Sci: A Publ Protein Soc. 2008;17:601–605. doi: 10.1110/ps.083453808
  • Al-Aboudi A, Al-Qawasmeh RA, Shahwan A, et al. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes. Acta Pharmacol Sin. 2015;36:879–886. doi: 10.1038/aps.2014.173
  • Anjum S, Atta-ur-Rahaman, Iqbal Choudhary M, et al. Intersting SAR studies of pregnane alkaloids isolated from genus Sarcococca against cholinesterase enzymes. Iran J Pharmaceut Res. 2010;3:16.
  • Khalid A, Azim MK, Parveen S, et al. Structural basis of acetylcholinesterase inhibition by triterpenoidal alkaloids. Biochem Biophys Res Commun. 2005;331:1528–1532. doi: 10.1016/j.bbrc.2005.03.248
  • Bennett GJ, Lee H-H. Xanthones from guttiferae. Phytochemistry. 1989;28:967–998. doi: 10.1016/0031-9422(89)80170-0
  • Fotie J, Bohle DS. Pharmacological and biological activities of xanthones. Antiinfect Agents Med Chem. 2006;5:15–31. doi: 10.2174/187152106774755563
  • Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review.
  • Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT – Food Sci Technol. 2009;42:1–8. doi: 10.1016/j.lwt.2008.07.007
  • Li GL, Cai CY, He JY, et al. Synthesis of 3-acyloxyxanthone derivatives as alpha-glucosidase inhibitors: a further insight into the 3-substituents’ effect. Bioorg Med Chem. 2016;24:1431–1438. Epub 2016/02/27. doi: 10.1016/j.bmc.2016.01.022
  • Rhee HK, Park HJ, Lee SK, et al. Synthesis, cytotoxicity, and DNA topoisomerase II inhibitory activity of benzofuroquinolinediones. Bioorg Med Chem. 2007;15:1651–1658. Epub 2006/12/30. doi: 10.1016/j.bmc.2006.12.012
  • Recanatini M, Bisi A, Cavalli A, et al. A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 alpha-hydroxylase/C17,20-lyase. J Med Chem. 2001;44:672–680. Epub 2001/03/23. doi: 10.1021/jm000955s
  • Sun J, Chu YF, Wu X, et al. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem. 2002;50:7449–7454. Epub 2002/11/28. doi: 10.1021/jf0207530
  • Urbain A, Marston A, Queiroz EF, et al. Xanthones from Gentiana campestris as new acetylcholinesterase inhibitors. Planta Med. 2004;70:1011–1014. Epub 2004/10/19. doi: 10.1055/s-2004-832632
  • Louh GN, Lannang AM, Mbazoa CD, et al. Polyanxanthone A, B and C, three xanthones from the wood trunk of Garcinia polyantha Oliv. Phytochemistry. 2008;69:1013–1017. Epub 2007/11/21. doi: 10.1016/j.phytochem.2007.10.002
  • Mohan C. Buffers. A guide for the preparation and use of buffers in biological systems: EMD Bioscience, San Diego, CA; 2006.
  • Ellman GL, Courtney KD, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
  • Spitzer R, Jain AN. Surflex-Dock: docking benchmarks and real-world application. J Comput Aided Mol Des. 2012;26:687–699. doi: 10.1007/s10822-011-9533-y
  • Bartolucci C, Haller LA, Jordis U, et al. Probing Torpedo californica acetylcholinesterase catalytic gorge with two novel bis-functional galanthamine derivatives. J Med Chem. 2010;53:745–751. Epub 2009/12/23. doi: 10.1021/jm901296p
  • Cosconati S, Forli S, Perryman AL, et al. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5:597–607. Epub 2011/05/03. doi: 10.1517/17460441.2010.484460
  • Morris GM, Huey R, Lindstrom W, et al. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. Epub 2009/04/29. doi: 10.1002/jcc.21256
  • Laskowski RA, Swindells MB. Ligplot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–2786. Epub 2011/09/17. doi: 10.1021/ci200227u
  • Abraham MJ, van der Spoel D, Lindahl D, team Gd. GROMACS user manual version 5.0.2; 2014.
  • Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291
  • Hess B, van der Vegt NFA. Hydration thermodynamic properties of amino acid analogues:  a systematic comparison of biomolecular force fields and water models. J Phys Chem B. 2006;110:17616–17626. doi: 10.1021/jp0641029
  • Schuttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D. 2004;60:1355–1363. doi: 10.1107/S0907444904011679
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593. doi: 10.1063/1.470117
  • Franklin G, Conceição LFR, Kombrink E, et al. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry. 2009;70:60–68. doi: 10.1016/j.phytochem.2008.10.016
  • Yung-Chi C, Prusoff WH. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.