290
Views
2
CrossRef citations to date
0
Altmetric
Articles

A combined force field for the silica/nickel system

, ORCID Icon & ORCID Icon
Pages 246-252 | Received 28 Apr 2019, Accepted 05 Nov 2019, Published online: 26 Nov 2019

References

  • He M, Chernov AI, Obraztsova ED, et al. Low temperature growth of SWCNTs on a nickel catalyst by thermal chemical vapor deposition. Nano Res. 2011;4:334–342. doi: 10.1007/s12274-010-0088-3
  • Page AJ, Chandrakumar KRS, Irle S, et al. SWNT nucleation from carbon-Coated SiO2 nanoparticles via a vapor-solid-solid mechanism. J Am Chem Soc. 2011;133:621–628. doi: 10.1021/ja109018h
  • Esconjauregui S, Whelan CM, Maex K. Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth. Nanotechnology. 2007;18:015602. doi: 10.1088/0957-4484/18/1/015602
  • Prasek J, Drbohlavova J, Chomoucka J, et al. Methods for carbon nanotubes synthesis: review. J Mater Chem. 2011;21:15872–15884. doi: 10.1039/c1jm12254a
  • Bustero I, García A, Obieta I, et al. Control of the properties of carbon nanotubes synthesized by CVD for application in electrochemical biosensors. Microchim Acta. 2006;152:239–247. doi: 10.1007/s00604-005-0442-4
  • Vashishta P, Kalia RK, Rino JP, et al. Interaction potential for SiO2: a molecular dynamics study of structural correlations. Phys Rev B. 1990;41:12197–12209. doi: 10.1103/PhysRevB.41.12197
  • Cowen BJ, El-Genk MS. On force fields for molecular dynamics simulations of crystalline silica. Comput Mat Sci. 2015;107:88–101. doi: 10.1016/j.commatsci.2015.05.018
  • Tsuneyuki S, Tsukada M, Aoki H, et al. First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett. 1988;61:869–872. doi: 10.1103/PhysRevLett.61.869
  • van Beest BWH, Kramer GJ, van Santen RA. Force fields for silicas and alumino-phosphates based on ab initio calculations. Phys Rev Lett. 1990;64:1955–1958. doi: 10.1103/PhysRevLett.64.1955
  • Rafii-Tabar H, Mansoori GA. Interatomic potential models for nanostructures. Encycl Nanosci Nanotechnol. 2004;4:231–248.
  • Munetoh S, Motooka T, Moriguchi K, et al. Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci. 2007;39:334–339. doi: 10.1016/j.commatsci.2006.06.010
  • Yasukawa A. Using an extended Tersoff interatomic potential to analyze the static-fatigue strength of SiO2 under atmospheric influence. JSME Int J A. 1996;39:313–320.
  • van Duin ACT, Dasgupta S, Lorant F, et al. Reaxff: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409. doi: 10.1021/jp004368u
  • Yu J, Sinnott SB, Phillpot SR. Charge optimized many-body potential for the Si-SiO2 system. Phys Rev B. 2007;75:085311. doi: 10.1103/PhysRevB.75.085311
  • Iwasaki T. Molecular-dynamics analysis of interfacial diffusion between high-permittivity gate dielectrics and silicon substrates. J Mater Res. 2004;19:1197–1202. doi: 10.1557/JMR.2004.0155
  • Iwasaki T. Molecular-dynamics study of interfacial diffusion between high-permittivity gate dielectrics and germanium substrates. J Mater Res. 2005;20:1300–1307. doi: 10.1557/JMR.2005.0158
  • Shan T-R, Devine BD, Kemper TW, et al. Charge-optimized many-body potential for the hafnium/hafnium oxide system. Phys Rev B. 2010;81:125328. doi: 10.1103/PhysRevB.81.125328
  • Devine B, Shan T-R, Cheng Y-T, et al. Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials. Phys Rev B. 2011;84:125308. doi: 10.1103/PhysRevB.84.125308
  • Shan T-R, Devine BD, Phillpot SR, et al. Molecular dynamics study of the adhesion of Cu/SiO2 interfaces using a variable-charge interatomic potential. Phys Rev B. 2011;83:115327. doi: 10.1103/PhysRevB.83.115327
  • Cheng Y-T, Shan T-R, Devine B, et al. Atomistic simulations of the adsorption and migration barriers of Cu adatoms on ZnO surfaces using COMB potentials. Surf Sci. 2012;606:1280–1288. doi: 10.1016/j.susc.2012.04.007
  • Liang T, Shan T-R, Cheng Y-T, et al. Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body COMB potentials. Mater Sci Eng R. 2013;74:255–279. doi: 10.1016/j.mser.2013.07.001
  • Levien L, Prewitt CT, Weidner DJ. Structure and elastic properties of quartz at pressure. Am Miner. 1980;65:920–930.
  • Wright AF, Lehmann MS. The structure of quartz at 25 and 590°C determined by neutron diffraction. J Solid State Chem. 1981;36:371–380. doi: 10.1016/0022-4596(81)90449-7
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Goel S, Masunov AE. Density functional theory study of small nickel clusters. J Mol Model. 2012;18:783–790. doi: 10.1007/s00894-011-1100-x
  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37:6991–7000. doi: 10.1103/PhysRevB.37.6991
  • Todd BD, Lynden-Bell RM. Surface and bulk properties of metals modelled with Sutton-Chen potentials. Surf Sci. 1993;281:191–206. doi: 10.1016/0039-6028(93)90868-K
  • Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Phil Mag Lett. 1990;61:139–146. doi: 10.1080/09500839008206493
  • Buckingham RA. The classical equation of state of gaseous helium, neon and argon. Proc Royal Soc A. 1938;168:264–283. doi: 10.1098/rspa.1938.0173
  • Zhen S, Davies GJ. Calculation of the Lennard-Jones n-m potential energy parameters for metals. Phys Status Solidi A. 1983;78:595–605. doi: 10.1002/pssa.2210780226
  • Todorov IT, Smith W, Trachenko K, et al. Dl_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Matter Chem. 2006;16:1911–1918. doi: 10.1039/b517931a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.