252
Views
1
CrossRef citations to date
0
Altmetric
Articles

The scrutinised DFT and MD studies on the adsorption of D-penicillamine drug on γ-Fe2O3 nanoparticle as a highly efficient carrier

, , , ORCID Icon & ORCID Icon
Pages 408-418 | Received 29 Jun 2019, Accepted 30 Dec 2019, Published online: 03 Feb 2020

References

  • He X, Liu F, Liu L, et al. Lectin-conjugated Fe2O3@Au core@shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol Pharm. 2014;11:738–745. doi: 10.1021/mp400456j
  • Millart E, Lesieur S, Faivre V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin Drug Deliv. 2018;15:523–540. doi: 10.1080/17425247.2018.1453804
  • von Baeckmann C, Guillet-Nicolas R, Renfer D, et al. A toolbox for the synthesis of multifunctionalized mesoporous silica nanoparticles for biomedical applications. ACS Omega. 2018;3:17496–17510. doi: 10.1021/acsomega.8b02784
  • Eixenberger JE, Anders CB, Wada K, et al. Defect engineering of ZnO nanoparticles for bioimaging applications. ACS Appl Mater Interfaces. 2019;11:24933–24944. doi: 10.1021/acsami.9b01582
  • Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119:4819–4880. doi: 10.1021/acs.chemrev.8b00733
  • Teodor ED, Gatea F, Ficai A, et al. Functionalized magnetic nanostructures for anticancer therapy. Bentham Sci. 2018;19:239–249.
  • Cardoso VF, Francesko A, Ribeiro C, et al. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7:1700845. doi: 10.1002/adhm.201700845
  • Hedayatnasab Z, Abnisa F, Wan W, et al. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–196. doi: 10.1016/j.matdes.2017.03.036
  • Mohammed L, Gomaa GH, Ragab D, et al. Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology. 2017;30:1–14. doi: 10.1016/j.partic.2016.06.001
  • Wu W, Wu Z, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501. doi: 10.1088/1468-6996/16/2/023501
  • Belin T, Guigue-Millot N, Caillot T, et al. Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters. J Solid State Chem. 2002;163:459–465. doi: 10.1006/jssc.2001.9426
  • Righi G, Magri R. Reduction and oxidation of maghemite (001) surfaces: the role of iron vacancies. J Phys Chem C. 2019;123:15648–15658. doi: 10.1021/acs.jpcc.9b03657
  • Kaloti M, Kumar A. Synthesis of chitosan-mediated silver coated γ-Fe2O3 (Ag−γ-Fe2O3@Cs) superparamagnetic binary nanohybrids for multifunctional applications. J Phys Chem C. 2016;120:17627–17644. doi: 10.1021/acs.jpcc.6b05851
  • Chao Y, Chen G, Liang C, et al. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett. 2019;19:4287–4296. doi: 10.1021/acs.nanolett.9b00579
  • Qu, M., Xiao, W., Tian, J. et al. Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe2O3 microspheres for cell carriers. Appl Biomater. 2019;107:511–520.
  • Torkashvand N, Sarlak N. Synthesis of completely dispersed water soluble functionalized graphene/γ-Fe2O3 nanocomposite and its application as an MRI contrast agent. J Mol Liq. 2019;291:111286. doi: 10.1016/j.molliq.2019.111286
  • Zhang H, Wei X, Liu L, et al. The role of positively charged sites in the interaction between model cell membranes and γ-Fe2O3 NPs. Sci Total Environ. 2019;673:414–423. doi: 10.1016/j.scitotenv.2019.04.074
  • Matos J, Gonçalves M., Pereira L, et al. SPIONs prepared in air through improved synthesis methodology: the influence of γ-Fe2O3/Fe3O4 ratio and coating composition on magnetic properties. Nanomaterials. 2019;9:943. doi: 10.3390/nano9070943
  • Kołątaj K, Ambroziak R, Kędziora M, et al. Formation of bifunctional conglomerates composed of magnetic γ-Fe2O3 nanoparticles and various noble metal nanostructures. Appl Surf Sci. 2019;470:970–978. doi: 10.1016/j.apsusc.2018.11.208
  • Jayarathne L, Ng W, Bandara A, et al. Fabrication of succinic acid-γ-Fe2O3 nanocore–shells. Colloid Surf A. 2012;403:96–102. doi: 10.1016/j.colsurfa.2012.03.061
  • Walshe JM. Wilson’s disease; new oral therapy. Lancet. 1956;270:25–26. doi: 10.1016/S0140-6736(56)91859-1
  • Peisach J, Blumberg WE. A mechanism for the action of penicillamine in the treatment of Wilson’s disease. Mol Pharmacol. 1969;5:200–209.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision A7. Pittsburgh (PA): Gaussian; 2003.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652. doi: 10.1063/1.464913
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299. doi: 10.1063/1.448975
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82:270. doi: 10.1063/1.448799
  • AIM2000 designed by Friedrich Biegler-Konig. Bielefeld: University of Applied Sciences.
  • Glendening ED, Reed AE, Carpenter JE, et al. NBO, version 3.1. Pittsburgh (PA): Gaussian; 1992.
  • Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of asolute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J Chem Phys. 1981;55:117–129.
  • Mennucci B. Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:386–404. doi: 10.1002/wcms.1086
  • Espinosa M, Souhassou H, Lachekar C. Topological analysis of the electron density in hydrogen bonds. J Acta Cryst. 1999;55:563–572. doi: 10.1107/S0108768199002128
  • Boys FS, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566. doi: 10.1080/00268977000101561
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001
  • Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x
  • Jorgensen WL., Chandrasekhar J, Madura JD., et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926. doi: 10.1063/1.445869
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10099. doi: 10.1063/1.464397
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:14101. doi: 10.1063/1.2408420
  • Berendsen HJC., Postma JPM., van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. doi: 10.1063/1.448118
  • Atanasov M. Theoretical studies on the higher oxidation states of iron. Inorg Chem. 1999;38:4942–4948. doi: 10.1021/ic990263y
  • Watanabe H, Seto J. The Intrinsic equilibrium constants of the surface hydroxyl groups of maghemite and hematite. Chem Soc Jpn. 1990;63:2916. doi: 10.1246/bcsj.63.2916
  • Yin S, Ma X, Ellis DE. Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3(0 0 0 1). Surf Sci. 2007;601:2426. doi: 10.1016/j.susc.2007.04.059
  • Duverger E, Picaud F, Stauffer L, et al. Simulations of graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity; from vacuum to cell membrane. ACS Appl Mater Interfaces. 2017;9:37554–37562. doi: 10.1021/acsami.7b09054
  • Duverger E, Balme S, Bechelany M, et al. Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Appl Surf Sci. 2019;475:666–675. doi: 10.1016/j.apsusc.2018.12.273
  • Natarajan SV, Suvitha A. Theoretical investigation of the binding of nucleobases to cucurbiturils by dispersion corrected DFT approaches. J Phys Chem B. 2017;121(18):4733–4744. doi: 10.1021/acs.jpcb.7b01808
  • Nagarajan V, Chandiramouli R. Adsorption studies of ethanol and butanol on Co3O4 nanostructures – a DFT study. Chem Phys. 2017;491:61–68. doi: 10.1016/j.chemphys.2017.05.007
  • Shabani Z, Morsali A, Bozorgmehr MR, et al. Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine. Chem Phys Lett. 2019;719:12–21. doi: 10.1016/j.cplett.2019.01.040
  • Farrokhpour H, Hadadzadeh H, Eskandari K, et al. Van der Waals DFT ONIOM study of the adsorption of DNA bases on the Cu(111) nanosurface. Appl Surf Sci. 2017;422:372–387. doi: 10.1016/j.apsusc.2017.06.042
  • Javaid S, Akhtar MJ. Adsorption and electronic properties of fullerene/Zn-phthalocyanine (C60/ZnPc) interface with face-on orientation: a van der Waals corrected density functional theory investigation. Chem Phys Lett. 2016;649:73–77. doi: 10.1016/j.cplett.2016.02.039
  • Najafi Chermahini A, Farrokhpour H, Zeinoddini A. Adsorption of some important tautomers of 5-amino tetrazole on the (001) and (101) surfaces of anatase: theoretical study. J Mol Struct. 2016;1121(5):203–214. doi: 10.1016/j.molstruc.2016.05.062
  • Schwarz AP, Bergmann CP, Fagan SB. Carbon nanotubes functionalized with titanium complexes for hexavalent chromium adsorption: an ab initio approach. Comput Theor Chem. 2017;1113:110–119. doi: 10.1016/j.comptc.2017.05.017
  • Zhao J, Lio X, Zhu Z, et al. Molecular insight into the enhancement of benzene-carbon nanotube interactions by surface modification for drug delivery systems (DDS). Appl Surf Sci. 2017;416:757–765. doi: 10.1016/j.apsusc.2017.04.186
  • Rozas I. On the nature of hydrogen bonds: an overview on computational studies and a word about patterns. Phys Chem. 2007;9:2782–2790.
  • Pearson RG. Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem. 1989;54:1423–1430. doi: 10.1021/jo00267a034
  • Saberinasab A, Raissi H, Hashemzadeh H. Understanding the effect of vitamin B6 and PEG functionalization on improving the performance of carbon nanotubes in temozolomide anticancer drug transportation. J Phys D Appl Phys. 2019;52:395402–385415. doi: 10.1088/1361-6463/ab2abf
  • Murray JS, Sen K. Molecular electrostatic potentials concepts and applications. Amsterdam: Elsevier; 1996.
  • Saleh G, Gatti C, Presti L. Energetics of non-covalent interactions from electron and energy density distributions. Comput Theor Chem. 2015;1053:53–59. doi: 10.1016/j.comptc.2014.10.011
  • Johnson ER., Keinan S, Mori-Sánchez P, et al. Revealing noncovalent interactions. J Am Chem Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w
  • Shaki H, Raissi H, Mollania F, et al. Modeling the interaction between anti-cancer drug penicillamine and pristine and functionalized carbon nanotubes for medical applications: density functional theory investigation and a molecular dynamics simulation. J Biomol Struct Dyn. 2019: 1–13. doi:10.1080/07391102.2019.1602080.
  • Lu SF, Shen BJ, Xu CX, et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation. Earth Sci. 2018;43:1783–1791.
  • Zhang Q, Han Y, Wu L. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes: a study by molecular dynamics simulation. Chem Eng J. 2019;363:278–284. doi: 10.1016/j.cej.2019.01.146
  • Henritzi P, Bormuth A, Klameth F, et al. A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids. J Chem Phys. 2015;143:164502. doi: 10.1063/1.4933208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.