1,209
Views
12
CrossRef citations to date
0
Altmetric
Articles

Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 905-924 | Received 16 Mar 2020, Accepted 03 Jun 2020, Published online: 28 Jun 2020

References

  • Zhong J, Alibakhshi MA, Xie Q, et al. Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices. Acc Chem Res. 2020;55(2):347–357.
  • Eijkel JC, Van Den Berg A. Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluidics. 2005;1(3):249–267.
  • Bocquet L. Nanofluidics coming of age. Nat Mater. 2020;19(3):254–256.
  • Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3(1):5–13.
  • Zeidel ML, Ambudkar SV, Smith BL, et al. Reconstitution of functional water channels in liposomes containing purified red cell chip28 protein. Biochemistry. 1992;31(33):7436–7440.
  • Radha B, Esfandiar A, Wang F, et al. Molecular transport through capillaries made with atomic-scale precision. Nature. 2016;538(7624):222–225.
  • Zhang Z, Wen L, Jiang L. Bioinspired smart asymmetric nanochannel membranes. Chem Soc Rev. 2018;47(2):322–356.
  • Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev. 2010;39(3):1073–1095.
  • Russo A, Durán-Olivencia MA, Kalliadasis S, et al. Macroscopic relations for microscopic properties at the interface between solid substrates and dense fluids. J Chem Phys. 2019;150(21):214705.
  • Chen X, Cao G, Han A, et al. Nanoscale fluid transport: size and rate effects. Nano Lett. 2008;8(9):2988–2992.
  • Thomas JA, McGaughey AJ, Kuter-Arnebeck O. Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int J Thermal Sci. 2010;49(2):281–289.
  • Thomas JA, McGaughey AJ. Reassessing fast water transport through carbon nanotubes. Nano Lett. 2008;8(9):2788–2793.
  • Thomas JA, McGaughey AJ. Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett. 2009;102(18):184502.
  • Nicholls WD, Borg MK, Lockerby DA, et al. Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluidics. 2012;12(1-4):257–264.
  • Xu B, Li Y, Park T, et al. Effect of wall roughness on fluid transport resistance in nanopores. J Chem Phys. 2011;135(14):144703.
  • Liu B, Wu R, Law AWK, et al. Channel morphology effect on water transport through graphene bilayers. Sci Rep. 2016;6:38583.
  • Daivis PJ, Todd BD. Challenges in nanofluidics-beyond Navier–Stokes at the molecular scale. Processes. 2018;6(9):144.
  • Kannam SK, Daivis PJ, Todd B. Modeling slip and flow enhancement of water in carbon nanotubes. MRS Bull. 2017;42(4):283–288.
  • Prasek J, Drbohlavova J, Chomoucka J, et al. Methods for carbon nanotubes synthesis – review. J Mater Chem. 2011;21(40):15872–15884.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Saito R, Dresselhaus G, Dresselhaus MS, et al. Physical properties of carbon nanotubes. Vol. 35. London: Imperial College Press, Imperial College; 1998.
  • Dresselhaus MS, Dresselhaus G, Eklund P, et al. Carbon nanotubes. Dordrecht: Springer; 2000.
  • Dresselhaus M. Down the straight and narrow. Nature. 1992;358:195–196.
  • Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001;414(6860):188–190.
  • Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.
  • Sui H, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414(6866):872–878.
  • Agre P, Borgnia MJ, Yasui M, et al. Discovery of the aquaporins and their impact on basic and clinical physiology. Curr Top Membr. 2001;51:1–38.
  • Borgnia M, Nielsen S, Engel A, et al. Cellular and molecular biology of the aquaporin water channels. Ann Rev Biochem. 1999;68(1):425–458.
  • Majumder M, Chopra N, Andrews R, et al. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature. 2005;438(7064):44–44.
  • Falk K, Sedlmeier F, Joly L, et al. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 2010;10(10):4067–4073.
  • Falk K, Sedlmeier F, Joly L, et al. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, omcts, and water. Langmuir. 2012;28(40):14261–14272.
  • Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci. 2003;100(18):10175–10180.
  • Kosa SA, Al-Zhrani G, Salam MA. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J. 2012;181–182:159–168.
  • Salam MA. Coating carbon nanotubes with crystalline manganese dioxide nanoparticles and their application for lead ions removal from model and real water. Colloids Surf A. 2013;419:69–79.
  • Upadhyayula VK, Deng S, Mitchell MC, et al. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ. 2009;408(1):1–13.
  • Mostafavi S, Mehrnia M, Rashidi A. Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination. 2009;238(1–3):271–280.
  • Fornasiero F, Park HG, Holt JK, et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc Natl Acad Sci. 2008;105(45):17250–17255.
  • Vatanpour V, Madaeni SS, Moradian R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci. 2011;375(1–2):284–294.
  • Ghosh S, Sood A, Kumar N. Carbon nanotube flow sensors. Science. 2003;299(5609):1042–1044.
  • Holt JK, Park HG, Wang Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science. 2006;312(5776):1034–1037.
  • Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B. 2008;112(5):1427–1434.
  • Majumder M, Corry B. Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem Commun. 2011;47(27):7683–7685.
  • Goh P, Ismail A, Ng B. Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination. 2013;308:2–14.
  • Semiat R. Energy issues in desalination processes. Environ Sci Technol. 2008;42(22):8193–8201.
  • Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333(6043):712–717.
  • Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination. Desalination. 2007;216(1–3):1–76.
  • Sablani S, Goosen M, Al-Belushi R, et al. Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination. 2001;141(3):269–289.
  • Maskan F, Wiley DE, Johnston LP, et al. Optimal design of reverse osmosis module networks. AIChE J. 2000;46(5):946–954.
  • Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater. 2013;23(29):3693–3700.
  • Wong SS, Joselevich E, Woolley AT, et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature. 1998;394(6688):52–55.
  • Gordillo M, Martı J. Hydrogen bond structure of liquid water confined in nanotubes. Chem Phys Lett. 2000;329(5–6):341–345.
  • Koga K, Gao G, Tanaka H, et al. Formation of ordered ice nanotubes inside carbon nanotubes. Nature. 2001;412(6849):802–805.
  • Marti J, Gordillo M. Temperature effects on the static and dynamic properties of liquid water inside nanotubes. Phys Rev E. 2001;64(2):021504.
  • Walther JH, Jaffe R, Halicioglu T, et al. Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B. 2001;105(41):9980–9987.
  • Werder T, Walther JH, Jaffe RL, et al. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett. 2001;1(12):697–702.
  • Noon WH, Ausman KD, Smalley RE, et al. Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem Phys Lett. 2002;355(5–6):445–448.
  • Pascal TA, Goddard WA, Jung Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc Natl Acad Sci. 2011;108(29):11794–11798.
  • Jorgensen WL, Madura JD. Temperature and size dependence for monte carlo simulations of TIP4P water. Mol Phys. 1985;56(6):1381–1392.
  • Prada-Gracia D, Shevchuk R, Rao F. The quest for self-consistency in hydrogen bond definitions. J Chem Phys. 2013;139(8):084501.
  • Hartkamp R, Coasne B. Structure and transport of aqueous electrolytes: from simple halides to radionuclide ions. J Chem Phys. 2014;141(12):124508.
  • Berezhkovskii A, Hummer G. Single-file transport of water molecules through a carbon nanotube. Phys Rev Lett. 2002;89(6):064503.
  • Hummer G. Water, proton, and ion transport: from nanotubes to proteins. Mol Phys. 2007;105(2-3):201–207.
  • Cambré S, Schoeters B, Luyckx S, et al. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys Rev Lett. 2010;104(20):207401.
  • Borg MK, Lockerby DA, Ritos K, et al. Multiscale simulation of water flow through laboratory-scale nanotube membranes. J Membr Sci. 2018;567:115–126.
  • Striolo A, Michaelides A, Joly L. The carbon-water interface: modeling challenges and opportunities for the water-energy nexus. Ann Rev Chem Biomol Eng. 2016;7:533–556.
  • Biedermann F, Nau WM, Schneider HJ. The hydrophobic effect revisited-studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew Chem Int Ed. 2014;53(42):11158–11171.
  • Sam A, Hartkamp R, Kannam SK, et al. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations. Nanotechnology. 2018;29(48):485404.
  • Navier C. Mémoire sur les lois du mouvement des fluides. Mém Acad Sci Inst France. 1823;6:389–440.
  • Sam A, Prasad V, Sathian SP. Water flow in carbon nanotubes: the role of tube chirality. Phys Chem Chem Phys. 2019;21(12):6566–6573.
  • Qin X, Yuan Q, Zhao Y, et al. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011;11(5):2173–2177.
  • Du F, Qu L, Xia Z, et al. Membranes of vertically aligned superlong carbon nanotubes. Langmuir. 2011;27(13):8437–8443.
  • Kotsalis E, Walther J, Koumoutsakos P. Multiphase water flow inside carbon nanotubes. Int J Multiphase Flow. 2004;30(7–8):995–1010.
  • Joseph S, Aluru N. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008;8(2):452–458.
  • Babu JS, Sathian SP. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. J Chem Phys. 2011;134(19):194509.
  • Kannam SK, Todd B, Hansen JS, et al. How fast does water flow in carbon nanotubes? J Chem Phys. 2013;138(9):094701.
  • Secchi E, Marbach S, Niguès A, et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature. 2016;537(7619):210–213.
  • Govind Rajan A, Strano MS, Blankschtein D. Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: the intriguing role of solid–liquid electrostatic interactions. Nano Lett. 2019;19(3):1539–1551.
  • Siria A, Bocquet ML, Bocquet L. New avenues for the large-scale harvesting of blue energy. Nat Rev Chem. 2017;1(11):1–10.
  • Iijima S, Ajayan P, Ichihashi T. Growth model for carbon nanotubes. Phys Rev Lett. 1992;69(21):3100.
  • Ebbesen T, Ajayan P. Large-scale synthesis of carbon nanotubes. Nature. 1992;358(6383):220–222.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. 1993.
  • Bethune D, Klang C, De Vries M, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. 1993.
  • Liu C, Cong H, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon. 1999;37(11):1865–1868.
  • Antisari MV, Marazzi R, Krsmanovic R. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon. 2003;41(12):2393–2401.
  • Zhu Hw, Jiang B, Xu Cl, et al. Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique. J Phys Chem B. 2003;107(27):6514–6518.
  • Li H, Guan L, Shi Z, et al. Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B. 2004;108(15):4573–4575.
  • Journet C, Maser W, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997;388(6644):756–758.
  • Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273(5274):483.
  • Braidy N, El Khakani M, Botton G. Carbon nanotubular structures synthesis by means of ultraviolet laser ablation. J Mater Res. 2002;17(09):2189–2192.
  • Takahashi S, Ikuno T, Oyama T, et al. Synthesis and characterization of carbon nanotubes grown on carbon particles by using high vacuum laser ablation. (Japanese title: Kō shinkū rēzāaburēshon o shiyō shite tanso ryūshi-jō ni seichōshita kābon'nanochūbu no gōsei to tokusei hyōka). J Vac Soc Jpn. 2002;45:609–612.
  • Vander Wal R, Berger G, Ticich T. Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phys A. 2003;77(7):885–889.
  • José-Yacamán M, Miki-Yoshida M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett. 1993;62(2):202–204.
  • Li W, Xie S, Qian L, et al. Large-scale synthesis of aligned carbon nanotubes. Science. 1996;274(5293):1701.
  • Qin L. Cvd synthesis of carbon nanotubes. J Mater Sci Lett. 1997;16(6):457–459.
  • Choi YC, Bae DJ, Lee YH, et al. Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. J Vac Sci Technol A. 2000;18(4):1864–1868.
  • Varadan VK, Xie J. Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater Struct. 2002;11(4):610.
  • Chatterjee A, Sharon M, Banerjee R, et al. CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors. Electrochim Acta. 2003;48(23):3439–3446.
  • Park D, Kim YH, Lee JK. Synthesis of carbon nanotubes on metallic substrates by a sequential combination of pecvd and thermal CVD. Carbon. 2003;41(5):1025–1029.
  • Chaisitsak S, Yamada A, Konagai M. Hot filament enhanced CVD synthesis of carbon nanotubes by using a carbon filament. Diam Relat Mater. 2004;13(3):438–444.
  • Seidel R, Duesberg GS, Unger E, et al. Chemical vapor deposition growth of single-walled carbon nanotubes at 600∘C and a simple growth model. J Phys Chem B. 2004;108(6):1888–1893.
  • Das R, Ali ME, Hamid SBA, et al. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination. 2014;336:97–109.
  • Li S, Liao G, Liu Z, et al. Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. J Mater Chem A. 2014;2(31):12171–12176.
  • Yamada T, Namai T, Hata K, et al. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol. 2006;1(2):131–136.
  • Hiramatsu M, Deguchi T, Nagao H, et al. Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation. Jap J Appl Phys. 2007;46(4L):L303.
  • Hinds BJ, Chopra N, Rantell T, et al. Aligned multiwalled carbon nanotube membranes. Science. 2004;303(5654):62–65.
  • Holt JK, Noy A, Huser T, et al. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 2004;4(11):2245–2250.
  • Majumder M, Chopra N, Hinds BJ. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano. 2011;5(5):3867–3877.
  • Whitby M, Cagnon L, Thanou M, et al. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 2008;8(9):2632–2637.
  • Figueras L, Faraudo J. Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes. Mol Simul. 2012;38(1):23–25.
  • Hansen JS, Todd B, Daivis PJ. Prediction of fluid velocity slip at solid surfaces. Phys Rev E. 2011;84(1):016313.
  • Liu YC, Shen JW, Gubbins KE, et al. Diffusion dynamics of water controlled by topology of potential energy surface inside carbon nanotubes. Phys Rev B. 2008;77(12):125438.
  • Vijayaraghavan V, Wong C. Transport characteristics of water molecules in carbon nanotubes investigated by using molecular dynamics simulation. Comput Mater Sci. 2014;89:36–44.
  • Liu L, Patey G. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate. J Chem Phys. 2014;141(18):18C518.
  • Liu L, Patey G. Simulated conduction rates of water through a (6,6) carbon nanotube strongly depend on bulk properties of the model employed. J Chem Phys. 2016;144(18):184502.
  • Losey J, Kannam SK, Todd B, et al. Flow of water through carbon nanotubes predicted by different atomistic water models. J Chem Phys. 2019;150(19):194501.
  • Popadić A, Walther JH, Koumoutsakos P, et al. Continuum simulations of water flow in carbon nanotube membranes. New J Phys. 2014;16(8):082001.
  • Myers TG. Why are slip lengths so large in carbon nanotubes? Microfluid Nanofluidics. 2011;10(5):1141–1145.
  • Mattia D, Calabrò F. Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions. Microfluid Nanofluidics. 2012;13(1):125–130.
  • Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem Rev. 2008;108(12):5014–5034.
  • Markesteijn A, Hartkamp R, Luding S, et al. A comparison of the value of viscosity for several water models using poiseuille flow in a nano-channel. J Chem Phys. 2012;136(13):134104.
  • Thekkethala JF, Sathian SP. The effect of graphene layers on interfacial thermal resistance in composite nanochannels with flow. Microfluid Nanofluidics. 2015;18(4):637–648.
  • Xie Q, Alibakhshi MA, Jiao S, et al. Fast water transport in graphene nanofluidic channels. Nat Nanotechnol. 2018;13(3):238–245.
  • Lokesh M, Youn SK, Park HG. Osmotic transport across surface functionalized carbon nanotube membrane. Nano Lett. 2018;18(11):6679–6685.
  • Rao R, Pint CL, Islam AE, et al. Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano. 2018;12(12):11756–11784.
  • Kim S, Jinschek JR, Chen H, et al. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 2007;7(9):2806–2811.
  • Yu M, Funke HH, Falconer JL, et al. High density, vertically-aligned carbon nanotube membranes. Nano Lett. 2008;9(1):225–229.
  • Tocci G, Joly L, Michaelides A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 2014;14(12):6872–6877.
  • Sokoloff J. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations. Phys Rev E. 2018;97(3):033107.
  • Michaelides A. Nanoscience: slippery when narrow. Nature. 2016;537(7619):171–172.
  • Velioğlu S, Karahan HE, Goh K, et al. Metallicity-dependent ultrafast water transport in carbon nanotubes. Small. 2020;1907575. https://doi.org/10.1002/smll.201907575
  • Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett. 1992;60(18):2204–2206.
  • Louie SG. Electronic properties, junctions, and defects of carbon nanotubes. In: Carbon nanotubes. Berlin: Springer; 2001. p. 113–145.
  • Tans SJ, Devoret MH, Dai H, et al. Individual single-wall carbon nanotubes as quantum wires. Nature. 1997;386(6624):474.
  • Mintmire JW, Dunlap B, White C. Are fullerene tubules metallic? Phys Rev Lett. 1992;68(5):631.
  • Hamada N, Sawada Si, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett. 1992;68(10):1579.
  • Goh K, Chen Y. Controlling water transport in carbon nanotubes. Nano Today. 2017;14:13–15.
  • Liu J, Wang C, Tu X, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun. 2012;3:1199.
  • Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature. 2014;510(7506):522.
  • Liu B, Liu J, Tu X, et al. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett. 2013;13(9):4416–4421.
  • Gu M, Vegas AJ, Anderson DG, et al. Combinatorial synthesis with high throughput discovery of protein-resistant membrane surfaces. Biomaterials. 2013;34(26):6133–6138.
  • Imbrogno J, Williams MD, Belfort G. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries. ACS Appl Mater Interfaces. 2015;7(4):2385–2392.
  • Park SM, Jung J, Lee S, et al. Fouling and rejection behavior of carbon nanotube membranes. Desalination. 2014;343:180–186.
  • Travis KP, Todd B, Evans DJ. Departure from Navier–Stokes hydrodynamics in confined liquids. Phys Rev E. 1997;55(4):4288.
  • Travis KP, Gubbins KE. Poiseuille flow of Lennard–Jones fluids in narrow slit pores. J Chem Phys. 2000;112(4):1984–1994.
  • Todd B, Hansen J. Nonlocal viscous transport and the effect on fluid stress. Phys Rev E. 2008;78(5):051202.
  • Todd B, Hansen J, Daivis PJ. Nonlocal shear stress for homogeneous fluids. Phys Rev Lett. 2008;100(19):195901.
  • Dalton BA, Daivis PJ, Hansen JS, et al. Effects of nanoscale density inhomogeneities on shearing fluids. Phys Rev E. 2013;88(5):052143.
  • Glavatskiy KS, Dalton BA, Daivis PJ, et al. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity. Phys Rev E. 2015;91(6):062132.
  • Dalton BA, Glavatskiy KS, Daivis PJ, et al. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Phys Rev E. 2015;92(1):012108.
  • Dalton BA, Glavatskiy KS, Daivis PJ, et al. Linear and nonlinear density response functions for a simple atomic fluid. J Chem Phys. 2013;139(4):044510.
  • Liu Y, Wang Q. Transport behavior of water confined in carbon nanotubes. Phys Rev B. 2005;72(8):085420.
  • Liu Y, Wang Q, Wu T, et al. Fluid structure and transport properties of water inside carbon nanotubes. J Chem Phys. 2005;123(23):234701.
  • Ye H, Zhang H, Zhang Z, et al. Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale Res Lett. 2011;6(1):1–5.
  • Zhang H, Ye H, Zheng Y, et al. Prediction of the viscosity of water confined in carbon nanotubes. Microfluid Nanofluidics. 2011;10(2):403–414.
  • Wu K, Chen Z, Li J, et al. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci. 2017;114(13):3358–3363.
  • Neek-Amal M, Peeters FM, Grigorieva IV, et al. Commensurability effects in viscosity of nanoconfined water. ACS Nano. 2016;10(3):3685–3692.
  • Wang Y, Xu J, Wang S, et al. Quantitative relationship between fluid inhomogeneities and flow enhancement in nanotubes. Nanoscale. 2017;9(20):6777–6782.
  • Shaat M, Zheng Y. Fluidity and phase transitions of water in hydrophobic and hydrophilic nanotubes. Sci Rep. 2019;9(1):5689.
  • Feng D, Li X, Wang X, et al. Capillary filling of confined water in nanopores: coupling the increased viscosity and slippage. Chem Eng Sci. 2018;186:228–239.
  • Camargo D, de la Torre JA, Duque-Zumajo D, et al. Nanoscale hydrodynamics near solids. J Chem Phys. 2018;148(6):064107.
  • Camargo D, de la Torre JA, Delgado-Buscalioni R, et al. Boundary conditions derived from a microscopic theory of hydrodynamics near solids. J Chem Phys. 2019;150(14):144104.
  • Bernardi S, Todd B, Searles DJ. Thermostating highly confined fluids. J Chem Phys. 2010;132(24):244706.
  • Sam A, Kannam SK, Hartkamp R, et al. Water flow in carbon nanotubes: the effect of tube flexibility and thermostat. J Chem Phys. 2017;146(23):234701.
  • Ma M, Grey F, Shen L, et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat Nanotechnol. 2015;10(8):692.
  • Cao W, Wang J, Ma M. Carbon nanostructure based mechano-nanofluidics. J Micromech Microeng. 2018;28(3):033001.
  • Cao W, Wang J, Ma M. Water diffusion in wiggling graphene membranes. J Phys Chem Lett. 2019;10(22):7251–7258.
  • Thomas M, Corry B. Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid Nanofluidics. 2015;18(1):41–47.
  • Vega C, Abascal JL. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13(44):19663–19688.
  • Celebi AT, Nguyen CT, Hartkamp R, et al. The role of water models on the prediction of slip length of water in graphene nanochannels. J Chem Phys. 2019;151(17):174705.
  • Prasad V, Kannam SK, Hartkamp R, et al. Water desalination using graphene nanopores: influence of the water models used in simulations. Phys Chem Chem Phys. 2018;20(23):16005–16011.
  • Melillo M, Zhu F, Snyder MA, et al. Water transport through nanotubes with varying interaction strength between tube wall and water. J Phys Chem Lett. 2011;2(23):2978–2983.
  • Shen C, Guo W. Manipulation of long-range water ordering in less confined nanotubes. J Phys Chem C. 2019;123(15):10101–10106.
  • Xie Y, Fu L, Joly L. Liquid–solid slip on charged walls: dramatic impact of charge distribution. Preprint 2020. arXiv:200202444.
  • Wang C, Yang H, Wang X, et al. Unexpected large impact of small charges on surface frictions with similar wetting properties. Commun Chem. 2020;3(1):1–7.
  • Wolf D, Keblinski P, Phillpot S, et al. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation. J Chem Phys. 1999;110(17):8254–8282.
  • Ewald PP. Ewald summation. Ann Phys. 1921;369:253.
  • Yeh IC, Berkowitz ML. Ewald summation for systems with slab geometry. J Chem Phys. 1999;111(7):3155–3162.
  • Sisan TB, Lichter S. The end of nanochannels. Microfluid Nanofluidics. 2011;11(6):787–791.
  • Joly L. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. J Chem Phys. 2011;135(21):214705.
  • Walther JH, Ritos K, Cruz-Chu ER, et al. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 2013;13(5):1910–1914.
  • Gravelle S, Joly L, Detcheverry F, et al. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci. 2013;110(41):16367–16372.
  • Gravelle S, Joly L, Ybert C, et al. Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport. J Chem Phys. 2014;141(18):18C526.
  • Tang D, Yoo YE, Kim D. Molecular dynamics simulations on water permeation through hourglass-shaped nanopores with varying pore geometry. Chem Phys. 2015;453:13–19.
  • Zhang X, Zhou W, Xu F, et al. Resistance of water transport in carbon nanotube membranes. Nanoscale. 2018;10(27):13242–13249.
  • Kannam SK, Todd B, Hansen JS, et al. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J Chem Phys. 2012;136(2):024705.
  • Bocquet L, Barrat JL. Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids. Phys Rev E. 1994;49(4):3079.
  • Sokhan V, Nicholson D, Quirke N. Fluid flow in nanopores: an examination of hydrodynamic boundary conditions. J Chem Phys. 2001;115(8):3878–3887.
  • Sokhan VP, Nicholson D, Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J Chem Phys. 2002;117(18):8531–8539.
  • Chen S, Wang H, Qian T, et al. Determining hydrodynamic boundary conditions from equilibrium fluctuations. Phys Rev E. 2015;92(4):043007.
  • Kannam SK, Todd B, Hansen JS, et al. Slip flow in graphene nanochannels. J Chem Phys. 2011;135(14):144701.
  • Kannam SK, Todd B, Hansen JS, et al. Interfacial slip friction at a fluid-solid cylindrical boundary. J Chem Phys. 2012;136(24):244704.
  • Oga H, Yamaguchi Y, Omori T, et al. Green-kubo measurement of liquid-solid friction in finite-size systems. J Chem Phys. 2019;151(5):054502.
  • Petravic J, Harrowell P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J Chem Phys. 2007;127(17):174706.
  • Huang K, Szlufarska I. Green-kubo relation for friction at liquid-solid interfaces. Phys Rev E. 2014;89(3):032119.
  • Sokhan VP, Quirke N. Slip coefficient in nanoscale pore flow. Phys Rev E. 2008;78(1):015301.
  • Sokhan VP, Quirke N. Interfacial friction and collective diffusion in nanopores. Mol Simul. 2004;30(4):217–224.
  • Groombridge M, Schneemilch M, Quirke N. Slip boundaries in nanopores. Mol Simul. 2011;37(12):1023–1030.
  • Ma MD, Shen L, Sheridan J, et al. Friction of water slipping in carbon nanotubes. Phys Rev E. 2011;83(3):036316.
  • Su J, Guo H. Effect of nanochannel dimension on the transport of water molecules. J Phys Chem B. 2012;116(20):5925–5932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.