433
Views
14
CrossRef citations to date
0
Altmetric
Articles

Thermal conductivity and mechanical properties of graphene-like BC2, BC3 and B4C3

ORCID Icon, ORCID Icon & ORCID Icon
Pages 879-888 | Received 28 Feb 2020, Accepted 15 Jun 2020, Published online: 05 Jul 2020

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.
  • Zhang YB, Tan YW, Stormer HL, et al. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–191.
  • Ghosh S, Bao W, Nika DL, et al. Dimensional crossover of thermal transport in few-layer graphene. Nat Mater. 2010;9(7):555–558.
  • Lee C, Wei X, Kysar JW, et al. Measurement of theelastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Xia F, Farmer DB, Lin YM, et al. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10:715–718.
  • Hashmi A, Farooq U, Hong J. Graphene/phosphorene bilayer: high electron speed, optical property and semiconductor-metal transition with electric field. Curr Appl Phys. 2016;16(3):318–323.
  • Gao N, Li JC, Jiang Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys Chem Chem Phys. 2014;16(23):11673–11678.
  • You B, Wang X, Zheng Z, et al. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys Chem Chem Phys. 2016;18(10):7381–7388.
  • Medvedyeva MV, Blanter YM. Piezoconductivity of gated suspended graphene. Phys Rev B. 2011;83:045426.
  • Ma Y, Dai Y, Guo M, et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano. 2012;6(2):1695–1701.
  • Martins TB, Miwa RH, da Silva AJR, et al. Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett. 2007;98(19):196803.
  • Lherbier A, Dubois SM-M, Declerck X, et al. Transport properties of graphene containing structural defects. Phys Rev B. 2012;86(7):075402.
  • Lherbier A, Blase X, Niquet Y-M, et al. Charge transport in chemically doped 2D graphene. Phys Rev Lett. 2008;101(3):036808.
  • Guinea F. Strain engineering in graphene. Solid State Commun. 2012;152(15):1437–1441.
  • Pereira VM, Castro Neto AH. Strain engineering of graphene's electronic structure. Phys Rev Lett. 2009;103(4):046801.
  • Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys. 2010;6(1):30–33.
  • Algara-Siller G, Severin N, Chong SY. Triazine-based Graphitic carbon nitride: a two-dimensional semiconductor. Angew Chem. 2014;53(29):7450–7455.
  • Teter DM, Hemley RJ. Low-compressibility carbon nitrides. Science. 1996;271(5245):53–55.
  • Xu Y, Gao S-P. Band gap of C3N4 in the GW approximation. Int J Hydrog Energy. 2012;37(15):11072–11080.
  • Ci L, Song L, Jin C, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater. 2010;9:430–435.
  • Mahmood J, Lee EK, Jung M, et al. Nitrogenated Holey two-dimensional structures. Nat Commun. 2015;6:6486.
  • Hong J, Xia X, Wang Y, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem. 2012;22(30):15006–15012.
  • Chen Y, Tan C, Zhang H, et al. Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev. 2015;44(9):2681–2701.
  • Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8:76–80.
  • Peng WC, Li XY. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catal Commun. 2014;49:63–67.
  • Li Y, Zhao Y, Fang L, et al. Highly efficient composite visible light-driven Ag–AgBr/g-C3N4 plasmonic photocatalyst for degrading organic pollutants. Mater Lett. 2014;126:5.
  • Ye S, Wang R, Wu M-Z, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci. 2015;358:15–27.
  • Martin DJ, Qiu K, Shevlin SA, et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem. 2014;53(35):9240–9245.
  • Wirth J, Neumann R, Antonietti M, et al. Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study. Phys Chem Chem Phys. 2014;16:15917–15926.
  • Makaremi M, Grixti S, Butler KT, et al. Band engineering of carbon nitride monolayers by N-type, P-type, and isoelectronic doping for photocatalytic applications. ACS Appl Mater Interfaces. 2018;10(13):11143–11151.
  • Zhang H, Zhang X, Yang G, et al. Point defect effects on photoelectronic properties of the potential metal-free C2N photocatalysts: insight from firstprinciples computations. J Phys Chem C. 2018;122(10):5291–5302.
  • Mahmood J, Lee EK, Jung M, et al. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc Natl Acad Sci Unit States Am. 2016;113(27):7414–7419.
  • Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N Y. 2017;118:25–34.
  • Dong Y, Meng M, Groves MM, et al. Thermal conductivities of two-dimensional graphitic carbon nitrides by molecule dynamics simulation. Int J Heat Mass Transf. 2018;123:738–746.
  • Shirazi A, Abadi R, Izadifar M, et al. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Comput Mater Sci. 2018;147:316–321.
  • Wang H, Wu H, Yang J. C3n: a two dimensional semiconductor material with high stiffness, superior stability and bending poisson’s effect. Cond Mat Mtrl Sci. 2017; 1703.08754.
  • Faye O, Hussain T, Karton A, et al. Tailoring the capability of carbon nitride (C3N) nanosheets toward hydrogen storage upon light transition metal decoration. Nanotechnology. 2019;30(7):075404.
  • Wang Y, Jiao Z, Ma S, et al. Probing C3N/graphene heterostructures as anode materials for Li-ion batteries. J Power Sources. 2019;413:117–124.
  • Wang X, Chen J. Phonon-mediated superconductivity in charge doped and Lideposited two dimensional C3N. Phys C Supercond Appl. 2019;558:12–16.
  • Zhang T, Zeng H, Ding D, et al. A numerical simulation of C3N nanoribbon-based field-effect transistors. IEEE Trans Electron Devices. 2019;66(2):1087–1091.
  • Thomas S, Lee SU. Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers. RSC Adv. 2019;9(3):1238–1246.
  • Zhang H, Li X, Meng X, et al. Isoelectronic analogues of graphene: the BCN monolayers with visible-light absorption and high carrier mobility. J Phys Condens Matter. 2019;31(12):125301.
  • Zhang T, Zhang J, Wen G, et al. Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption. Carbon N Y. 2018;136:345–358.
  • Zhang H, Liao Y, Yang G, et al. Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: a promising candidate for metal-free photocatalysts. ACS Omega. 2018;3(9):10517–10525.
  • Hussain T, Searles DJ, Takahashi K. Reversible hydrogen uptake by BN and BC3 monolayers functionalized with small Fe clusters: a route to effective energy storage. J Phys Chem A. 2016;120:2009–2013.
  • Beheshtian J, Peyghan AA, Noei M. Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sens Actuators B Chem. 2013;181:829–834.
  • Tang Y, Zhang M, Shen Z, et al. Non-metal atom anchored BC3 sheet: a promising low-cost and high-activity catalyst for CO oxidation. New J Chem. 2018;42(5):3770–3780.
  • Chigo-Anota E, Alejandro MA, Hernandez AB, et al. Long range corrected-wPBE based analysis of the H 2 O adsorption on magnetic BC3 nanosheets. RSC Adv. 2016;6(24):20409–20421.
  • Tang Y, Cui X, Chen W, et al. A theoretical study on metal atom-modified BC3 sheets for effects of gas molecule adsorptions. Appl Phys A. 2018;124(6):434.
  • Mehdi Aghaei S, Monshi MM, Torres I, et al. DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Appl Surf Sci. 2018;427:326–333.
  • Qie Y, Liu J, Wang S, et al. C3b monolayer as an anchoring material for lithium-sulfur batteries. Carbon N Y. 2018;129:38–44.
  • Gao F, Klug DD. Theoretical study of new superhard materials B4C3. J Appl Phys. 2007;102(8):084311.
  • Wang Q, Chen L-Q, Annett JF. Stability and charge transfer of C3B ordered structures. Phys Rev B. 1996;54:R2271–R2275.
  • Tomanek D, Wentzcovitch RM, Louie SG, et al. Calculation of electronic and structural properties of BC3. Phys Rev B. 1988;37:3134–3136.
  • Miyamoto Y, Rubio A, Louie SG, et al. Electronic properties of tubule forms of hexagonal BC3. Phys Rev B. 1994;50:18360–18366.
  • Ding Y, Wang Y, Ni J. Electronic structures of BC3 nanoribbons. Appl Phys Lett. 2009;94:073111.
  • Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Comput Mater Sci. 2015;99:285–289.
  • Mortazavi B, Rahaman O, Rabczuk T, et al. Thermal conductivity and mechanical properties of nitrogenated holey graphene. Carbon N Y. 2016;106:1–8.
  • Senturk AE, Oktem AS, Konukman AES. An investigation on the thermo-mechanical properties of boron-doped C3N4. Appl Phys A. 2019;125:53.
  • Mortazavi B, Shahrokhi M, Raeisi M, et al. Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors. Carbon N Y. 2019;149:733–742.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Accelrys Inc. Materials studio. San Francisco; 2018. http://accelrys.com.
  • Lindsay L, Broido DA. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B. 2010;81(20):205441.
  • Kınacı A, Haskins JB, Sevik C, et al. Thermal conductivity of BN-C nanostructures. Phys Rev B. 2012;86:1–8.
  • Senturk AE, Oktem AS, Konukman AES. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. J Mol Model. 2017;23(8):247.
  • Senturk AE, Oktem AS, Konukman AES. Influence of defect locations and nitrogen doping configuration on the mechanical properties of armchair graphene nanoribbons. J Mol Model. 2018;24(2):43.
  • Senturk AE, Oktem AS, Konukman AES. Investigation of the effects of nitrogen doping within different sites of Stone-Wales defects on the mechanical properties of graphene by using a molecular dynamics simulation method. J Fac Eng Archit Gazi Univ. 2019;34(1):69–78.
  • Yousefi F, Shavikloo M, Mohammadi M. Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene. Mol Simulat. 2019;45(8):646–651.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.
  • Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.