224
Views
1
CrossRef citations to date
0
Altmetric
Articles

An atomistic perspective into the fracture behaviour of Fe-bicrystal

, ORCID Icon, &
Pages 966-974 | Received 01 Mar 2020, Accepted 04 Jul 2020, Published online: 23 Jul 2020

References

  • Latapie A, Farkas D. Molecular dynamics investigation of the fracture behavior of nanocrystalline-Fe. Phys Rev B. 2004;69:134110. doi: 10.1103/PhysRevB.69.134110
  • Farkas D. Atomistic simulations of metallic microstructures. Curr Opin Solid State Mater. Sci. 2013;17:284–297. doi: 10.1016/j.cossms.2013.11.002
  • Liu T, Groh S. Atomistic modeling of the crack-void interaction in α-Fe. Mater Sci Eng A. 2014;609:255–265. doi: 10.1016/j.msea.2014.05.005
  • Uhnáková A, Machová A, Hora P, et al. Growth of a brittle crack (0 0 1) in 3D bcc iron crystal with a Cu nano-particle. Comput Mater Sci. 2014;83:229–234. doi: 10.1016/j.commatsci.2013.10.037
  • Tanaka M, Tarleton E, Roberts SG. The brittle-ductile transition in single-crystal iron. Acta Mater. 2008;56:5123–5129. doi: 10.1016/j.actamat.2008.06.025
  • Ma L, Xiao S, Deng H, et al. Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int J Fatigue. 2014;68:253–259. doi: 10.1016/j.ijfatigue.2014.04.010
  • Uhnáková A, Pokluda J, MacHová A, et al. 3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III. Int J Fatigue. 2011;33:1564–1573. doi: 10.1016/j.ijfatigue.2011.06.015
  • Gordon PA, Neeraj T, Luton MJ. Atomistic simulation of dislocation nucleation barriers from cracktips in α-Fe . Model Simul Mater Sci. 2008;16(4):045006. doi: 10.1088/0965-0393/16/4/045006
  • Ringdalen I, Stukowski A, Thaulow C, et al. Three-dimensional crack initiation mechanisms in bcc-Fe under loading modes I, II and III. Mater Sci Eng A. 2013;560:306–314. doi: 10.1016/j.msea.2012.09.071
  • Guo Y, Wang C, Zhao D. Atomistic simulation of crack cleavage and blunting in bcc-Fe. Mater Sci Eng A. 2003;349:2–8. doi: 10.1016/S0921-5093(02)00287-3
  • Borodin VA, Vladimirov P V. Molecular dynamics simulations of quasi-brittle crack development in iron. J Nucl Mater. 2011;415:320–328. doi: 10.1016/j.jnucmat.2011.04.052
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Zhou Y, Yang Z, Lu Z. Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation. Mater Sci Eng A. 2014;599:116–124. doi: 10.1016/j.msea.2014.01.070
  • Zhang Y, Jiang S, Zhu X, et al. Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on molecular dynamics simulation. Res Phys. 2017;7:1722–1733.
  • Chandra S, Naveen Kumar N, Samal MK, et al. An atomistic insight into the fracture behavior of bicrystal aluminum containing twist grain boundaries. Comput Mater Sci. 2017;130:268–281. doi: 10.1016/j.commatsci.2017.01.023
  • Tschopp MA, Coleman SP, McDowell DL. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov. 2015;4:176–189. doi: 10.1186/s40192-015-0040-1
  • Möller JJ, Bitzek E. BDA: A novel method for identifying defects in body-centered cubic crystals. MethodsX. 2016;3:279–288. doi: 10.1016/j.mex.2016.03.013
  • Qiao Y, Argon AS. Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: experiments and modeling. Mech Mater. 2003;35:129–154. doi: 10.1016/S0167-6636(02)00194-1
  • Qiao Y, Argon AS. Brittle-to-ductile fracture transition in Fe-3wt.%Si single crystals by thermal crack arrest. Mech Mater. 2003;35:903–912. doi: 10.1016/S0167-6636(02)00293-4
  • Argon AS, Qiao Y. Cleavage cracking resistance of large-angle grain boundaries in Fe-3 wt% Si alloy. Philos Mag A Phys Condens Matter Struct Defects Mech Prop. 2002;82:3333–3347.
  • Qiao Y, Kong X. An energy analysis of the grain boundary behavior in cleavage cracking in Fe-3wt.%Si alloy. Mater Lett. 2004;58:3156–3160. doi: 10.1016/j.matlet.2004.05.063
  • Guo YF, Zhao DL. Atomistic simulation of structure evolution at a crack tip in bcc-iron. Mater Sci Eng A. 2007;448:281–286. doi: 10.1016/j.msea.2006.10.033
  • Bitzek E, Gumbsch P. Mechanisms of dislocation multiplication at crack tips. Acta Mater. 2013;61:1394–1403. doi: 10.1016/j.actamat.2012.11.016
  • Möller JJ, Bitzek E. On the influence of crack front curvature on the fracture behavior of nanoscale cracks. Engineering Fracture Mechanics. 2015;150:197–208. doi: 10.1016/j.engfracmech.2015.03.028
  • Abbaschian R, Abbaschian L, E Reed-Hill R. Physical metallurgy principles. 4th ed. Stamford: Cengage Learning; 2009.
  • Gottstein G, Shvindlerman LS. Grain boundary migration in metals thermodynamics, kinetics, applications. 2nd ed. Boca Raton: Taylor & Francis Group; 2009.
  • Talaei MS, Nouri N, Ziaei-Rad S. An optimized approach for computing coincidence-site-lattice grain boundary energy. Comput Condens Matter. 2019;19:e00363. doi: 10.1016/j.cocom.2019.e00363
  • Terentyev D, Gao F. Blunting of a brittle crack at grain boundaries: an atomistic study in BCC iron. Mater Sci Eng A. 2013;576:231–238. doi: 10.1016/j.msea.2013.04.012
  • Tong X, Zhang H, Li D. Effects of misorientation and inclination on mechanical response of ⟨1 1 0⟩ tilt grain boundaries in α -Fe to external stresses. Model Simul Mater Sci Eng. 2014;22:65016. doi: 10.1088/0965-0393/22/6/065016
  • Swenson RJ. Comments on virial theorems for bounded systems. Am J Phys. 1983;51:940–942. doi: 10.1119/1.13390
  • Subramaniyan AK, Sun CT. Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct. 2008;45:4340–4346. doi: 10.1016/j.ijsolstr.2008.03.016
  • Möller JJ, Bitzek E. Comparative study of embedded atom potentials for atomistic simulations of fracture in -iron. Model Simul Mater Sci Eng. 2014;22:045002. doi: 10.1088/0965-0393/22/4/045002
  • Mendelev MI, Han S, Srolovitz DJ, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 2003;83:3977–3994. doi: 10.1080/14786430310001613264
  • Kelchner CL, Plimpton SJ, Hamilton JC. Phys Rev B. 1 Nov 1998;I:58.
  • Stukowski A. Visualization and analysis of atomistic simulation data with {OVITO} the open visualization tool. Model Simul Mater Sci Eng. 2009;18:15012. doi: 10.1088/0965-0393/18/1/015012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.