180
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multiple cascade radiation damage simulations of pyrochlore

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 273-283 | Received 25 Jun 2018, Accepted 31 Jul 2020, Published online: 28 Oct 2020

References

  • Lumpkin GR. Ceramic waste forms for actinides. Elements. 2006;2:365–372. doi: 10.2113/gselements.2.6.365
  • Omel’yanenko BI, Petrov VA, Poluektov VV. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water. Geol Ore Depos. 2007;49:378–391. doi: 10.1134/S1075701507050042
  • Ringwood AE, Kesson SE, Ware NG, et al. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature. 1979;278:219–223. doi: 10.1038/278219a0
  • Wang SX, Begg BD, Wang LM, et al. Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. J Mater Res. 1999;14:4470–4473. doi: 10.1557/JMR.1999.0606
  • Todorov IT, Purton JA, Allan NL, et al. Simulation of radiation damage in gadolinium pyrochlores. J Phys-Condens Matter. 2006;18:2217–2234. doi: 10.1088/0953-8984/18/7/010
  • Lian J, Wang LM, Haire RG, et al. Ion beam irradiation in La2Zr2O7–Ce2Zr2O7 pyrochlore. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2004;218:236–243. doi: 10.1016/j.nimb.2004.01.007
  • Mazzi F, Munno R. Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymignyte and zirkelite: comparison with pyrochlore and zirconolite. Am Mineral. 1983;68:262–276.
  • Rossell HJ. Zirconolite –a fluorite-related superstructure. Nature. 1980;283:282–283. doi: 10.1038/283282a0
  • Wang J, Lang M, Ewing RC, et al. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides. J Phys: Condens Matter. 2013;25:135001.
  • Lang M, Lian J, Zhang J, et al. Single-ion tracks in pyrochlores irradiated with swift heavy ions. Phys Rev B. 2009;79:224105. doi: 10.1103/PhysRevB.79.224105
  • Lang M, Zhang FX, Ewing RC, et al. Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: disordering and amorphization. J Mater Res. 2009;24:1322–1334. doi: 10.1557/jmr.2009.0151
  • Lang M, Toulemonde M, Zhang J, et al. Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: effect of electronic energy loss. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2014;336:102. doi: 10.1016/j.nimb.2014.06.019
  • Chartier A, Catillon G, Crocombette J-P. Key role of the cation interstitial structure in the radiation resistance of pyrochlores. Phys Rev Lett. 2009;102:155503. doi: 10.1103/PhysRevLett.102.155503
  • Wang XJ, Xiao HY, Zu XT, et al. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7. J Mater Chem C. 2013;1:1665. doi: 10.1039/c2tc00192f
  • Purton JA, Allan NL. Displacement cascades in Gd2Ti2O7 and Gd2Zr2O7: a molecular dynamics study. J Mater Chem. 2002;12:2923–2926. doi: 10.1039/b201111p
  • Catillon G, Chartier A. Pressure and temperature phase diagram of Gd2Ti2O7 under irradiation. J Appl Phys 2014;116:193502. doi: 10.1063/1.4901577
  • Gunn DSD, Allan NL, Foxhall H, et al. Novel potentials for modelling defect formation and oxygen vacancy migration in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. J Mater Chem. 2012;22:4675. doi: 10.1039/c2jm15264a
  • Whittle KR, Lumpkin GR, Smith KL, et al. Radiation tolerance of A2Ti2O7 materials - a question of bonding? 30th Symposium on scientific basis for nuclear waste management. 2007;985:329.
  • Devanathan R, Weber WJ. Insights into the radiation response of pyrochlores from calculations of threshold displacement events. J Appl Phys. 2005;98:086110. doi: 10.1063/1.2120889
  • Devanathan R, Weber WJ, Gale JD. Radiation tolerance of ceramics – insights from atomistic simulation of damage accumulation in pyrochlores. Energy Environ Sci. 2010;3:1551. doi: 10.1039/c0ee00066c
  • Todorov IT, Allan NL, Purton JA, et al. Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores. J Mater Sci. 2007;42:1920. doi: 10.1007/s10853-006-1323-x
  • Ewing RC. Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Mineral Mag. 2011;75:2359. doi: 10.1180/minmag.2011.075.4.2359
  • Sattonnay G, Tetot R. A charge optimized many-body (comb) potential for titanium and titania. J Phys: Condens Matter. 2014;26:315007.
  • Chartier A, Van Brutzel L, Crocombette J-P. Atomistic simulations of the radiation resistance of oxides. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2012;286:154–158. doi: 10.1016/j.nimb.2012.01.002
  • Moll S, Sattonnay, G, Thomé L, Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes. Phys Rev B. 2011;84:064115. doi: 10.1103/PhysRevB.84.064115
  • Chartier A, Meis C, Crocombette J-P, et al. Molecular dynamic simulation of disorder induced amorphization in pyrochlore. Phys Rev Lett. 2005;94:025505. doi: 10.1103/PhysRevLett.94.025505
  • Davoisne C, Lee WE, Stennett MC, et al. Irradiation effects in ceramics for plutonium disposition. In: Fox K, Hoffman E, Navinnjooran, Pickrel G, editors. Advances in materials science for environmental and nuclear technology. Wiley; 2010 . p. 3–9.
  • Foxhall HR, Travis KP, Hobbs LW, et al. Understanding the radiation-induced amorphization of zirconolite using molecular dynamics and connectivity topology analysis. Philos Mag. 2013;93:328–355. doi: 10.1080/14786435.2012.718448
  • Trachenko K, Zarkadoula E, Todorov IT, et al. Modeling high-energy radiation damage in nuclear and fusion applications. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2012;277:6–13. doi: 10.1016/j.nimb.2011.12.058
  • Aidhy DS, Sachan R, Zarkadoula E, et al. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7. Sci Rep. 2015;5:16297. doi: 10.1038/srep16297
  • Gao F, Weber WJ. Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide. J Mater Res. 2002;17:259–262. doi: 10.1557/JMR.2002.0035
  • Martin G, Garcia P, Sabathier C, et al. A thermal modelling of displacement cascades in uranium dioxide. Nuclear Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2014;327:108–112. doi: 10.1016/j.nimb.2013.09.043
  • Gao F, Bacon DJ, Calder AF, et al. Computer simulation study of cascade overlap effects in α-iron. J Nucl Mater. 1996;230(1):47–56. doi: 10.1016/0022-3115(96)00020-7
  • Spaczer M, Caro A, Victoria M, et al. Computer simulations of disordering and amorphization kinetics in intermetallic compounds. Nuclear Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 1995;102:81–85. doi: 10.1016/0168-583X(95)80121-2
  • Levo E, Granberg F, Fridlund C, et al. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J Nucl Mater. 2017;490:323–332. doi: 10.1016/j.jnucmat.2017.04.023
  • Tuller HL. Oxygen ion conduction and structural disorder in conductive oxides. J Phys Chem Solids. 1994;55:1393–1404. doi: 10.1016/0022-3697(94)90566-5
  • Archer A, Foxhall HR, Allan NL, et al. Order parameter and connectivity topology analysis of crystalline ceramics for nuclear waste immobilization. J Phys: Condens Matter. 2014;26:485011.
  • Todorov IT, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism . J Mater Chem. 2006;16:1911. doi: 10.1039/b517931a
  • Allan NL, Barrera GD, Fracchia RM, et al. Free energy of solid solutions and phase diagrams via quasiharmonic lattice dynamics. Phys Rev B. 2001;63:094203. doi: 10.1103/PhysRevB.63.094203
  • Shearer J, Archer A, Allan NL. (unpublished results ).
  • Trachenko K, Dove M, Artacho E, et al. Atomistic simulations of resistance to amorphization by radiation damage. Phys Rev B. 2006;73:174207. doi: 10.1103/PhysRevB.73.174207
  • Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B. 1983;28:784–805. doi: 10.1103/PhysRevB.28.784
  • Moroni D, ten Wolde PR, Bolhuis PG. Interplay between structure and size in a critical crystal nucleus. Phys Rev Lett. 2005;94:235703. doi: 10.1103/PhysRevLett.94.235703
  • Morse PM, Feshbach H. Methods of theoretical physics. New York: McGraw-Hill; 1953.
  • Li YH, Wen J, Wang YQ, et al. The irradiation effects of Gd2Hf2O7 and Gd2Ti2O7. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2012;287:130–134. doi: 10.1016/j.nimb.2012.06.003
  • Strachan DM, Scheele RD, Buck EC, et al. Radiation damage effects in candidate titanates for Pu disposition: pyrochlore. J Nucl Mater. 2005;345:109–135. doi: 10.1016/j.jnucmat.2005.04.064
  • Weber WJ, Hess NJ, Maupin GD. Amorphization in Gd2Ti2O7 and CaZrTi2O7 irradiated with 3 MeV argon ions. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 1992;65:102–106. doi: 10.1016/0168-583X(92)95021-I
  • Lian J, Weber WJ, Jiang W, et al. Radiation-induced effects in pyrochlores and nanoscale materials engineering. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater At. 2006;250:128–136. doi: 10.1016/j.nimb.2006.04.157
  • Weber WJ. Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 2000;166:98–106. doi: 10.1016/S0168-583X(99)00643-6
  • Hecking N, Heidemann KF, Te Kaat E. Model of temperature dependent defect interaction and amorphization in crystalline silicon during ion irradiation. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At. 1986;15:760–764. doi: 10.1016/0168-583X(86)90407-6
  • Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–184. doi: 10.1063/1.1750872
  • Jiang C, Stanek CR, Sickafus KE, et al. First-principles prediction of disordering tendencies in pyrochlore oxides. Phys Rev B. 2009;79:155503.
  • Minervini L, Grimes RW, Tabira Y, et al. The oxygen positional parameter in pyrochlores and its dependence on disorder. Philos Mag: Phys Condens Matter Struct Defects Mech Prop. 2002;82:123. doi: 10.1080/01418610208240001
  • Ewing RC, Weber WJ, Lian J. Nuclear waste disposal – pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and 'minor' actinides. J Appl Phys. 2004;95:5949–5971. doi: 10.1063/1.1707213
  • Gunn DSD, Allan NL, Purton JA. Adaptive kinetic Monte Carlo simulation of solid oxide fuel cell components. J Mater Chem A. 2014;2:13407–13414. doi: 10.1039/C4TA01504E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.