1,015
Views
1
CrossRef citations to date
0
Altmetric
Articles

Adaptive steered molecular dynamics of biomolecules

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 408-419 | Received 10 May 2020, Accepted 03 Aug 2020, Published online: 20 Aug 2020

References

  • Laio, A, Parrinello, M. Escaping free-energy minima. Proc Natl Acad Sci USA 2002;99:12562–12566. doi: 10.1073/pnas.202427399
  • Barducci, A, Bussi, G, Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008;100:020603. doi: 10.1103/PhysRevLett.100.020603
  • Tiwary, P, Parrinello, M. From metadynamics to dynamics. Phys Rev Lett. 2013;111:230602. doi: 10.1103/PhysRevLett.111.230602
  • Park, S, Khalili-Araghi, F, Tajkhorshid, E, et al. Free energy calculation from steered molecular dynamics simulations using jarzynski's equality. J Chem Phys. 2003;119:3559–3566. doi: 10.1063/1.1590311
  • Park, S, Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys. 2004;120:5946–5961. doi: 10.1063/1.1651473
  • Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E. 1997;56:5018–5035. doi: 10.1103/PhysRevE.56.5018
  • Jarzynski, C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78:2690–2693. doi: 10.1103/PhysRevLett.78.2690
  • Crooks, GE. Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems. J Stat Phys. 1998;90:1481–1487. doi: 10.1023/A:1023208217925
  • Suh, D, Radak, BK, Chipot, C, et al. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics – Monte Carlo propagator. J Chem Phys. 2018;148:014101. doi: 10.1063/1.5004154
  • Okur, A, Roe, DR, Cui, G, et al. Improving convergence of replica-exchange simulations through coupling to a high-temperature structure reservoir. J Chem Theory Comput. 2007;3:557–568. doi: 10.1021/ct600263e
  • Bernardi, RC, Melo, MCR, Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta. 2015;1850:872–877. doi: 10.1016/j.bbagen.2014.10.019
  • Ozer, G, Valeev, E, Quirk, S, et al. Adaptive steered molecular dynamics of the long-distance unfolding of neuropeptide Y. J Chem Theory Comput. 2010;6:3026–3038. doi: 10.1021/ct100320g
  • Ozer, G, Quirk, S, Hernandez, R. Adaptive steered molecular dynamics: validation of the selection criterion and benchmarking energetics in vacuum. J Chem Phys. 2012;36:215104.
  • Ozer, G, Quirk, S, Hernandez, R. Thermodynamics of decaalanine stretching in water obtained by adaptive steered molecular dynamics simulations. J Chem Theory Comput. 2012;8:4837–4844. doi: 10.1021/ct300709u
  • Lu, N, Kofke, DA. Optimal intermediates in staged free energy calculations. J Chem Phys. 1999;111:4414–4423. doi: 10.1063/1.479206
  • Wu, D, Kofke, DA. Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation. J Chem Phys. 2005;23:054103.
  • Wu, D, Kofke, DA. Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations. J Chem Phys. 2005;123:084109.
  • Moradi, M, Babin, V, Roland, C, et al. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J Chem Phys. 2010;33(12):125104.
  • Wu, D, Kofke, DA. Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation. J Chem Phys. 2005;122:204104.
  • Echeverria, I, Amzel, LM. Helix propensities calculations for amino acids in alanine based peptides using Jarzynski's equality. Proteins: Struct Func Bioinf. 2010;78:1302–1310. doi: 10.1002/prot.22649
  • Echeverria, I, Amzel, LM. Estimation of free-energy differences from computed work distributions: an application of jarzynski's equality. J Phys Chem B. 2012;116(36):10986–10995. doi: 10.1021/jp300527q
  • MacFadyen, J, Andricioaei, I. A skewed-momenta method to efficiently generate conformational-transition trajectories. J Chem Phys. 2005;123(7):074107. doi: 10.1063/1.2000242
  • Oberhofer, H, Dellago, C, Boresch, S. Single molecule pulling with large time steps. Phys Rev E. 2007;75:061106. doi: 10.1103/PhysRevE.75.061106
  • Do, TN, Carloni, P, Varani, G, et al. Rna/peptide binding driven by electrostatics – insight from bidirectional pulling simulations. J Chem Theory Comput. 2013;9:1720–1730. doi: 10.1021/ct3009914
  • Bureau, HR, Merz, D, Jr, Hershkovits, E, et al. Constrained unfolding of a helical peptide: implicit versus explicit solvents. PLoS One. 2015;10:e0127034. doi: 10.1371/journal.pone.0127034
  • Quirk, S, Hopkins, M, Bureau, H, et al. Mutational analysis of neuropeptide y reveals unusual thermal stability linked to higher-order self-association. ACS Omega. 2018;3:2141–2154. doi: 10.1021/acsomega.7b01949
  • Bureau, HR, Hershkovits, E, Quirk, S, et al. Determining the energetics of small beta sheet peptides using adaptive steered molecular dynamics. J Chem Theory Comput. 2016;12:2028–2037. doi: 10.1021/acs.jctc.5b01110
  • Ozer, G, Keyes, T, Quirk, S, et al. Multiple branched adaptive steered molecular dynamics. J Chem Phys. 2014;141:064101. doi: 10.1063/1.4891807
  • Bureau, H, Quirk, S, Hernandez, R. The relative stability of trpzip1 and its mutants determined by computation and experiment. RSC Adv. 2020;10:6520–6535. doi: 10.1039/D0RA00920B
  • Zwanzig, RW. High temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys. 1954;22:1420–1426. doi: 10.1063/1.1740409
  • Torrie, GM, Valleau, JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Chem Phys. 1977;23(2):187–199.
  • Kumar, S, Rosenberg, JM, Bouzida, D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812
  • Jorgensen, WL. Free energy calculations: a breakthrough for modeling organic chemistry in solution. Acc Chem Res. 1989;22:184–189. doi: 10.1021/ar00161a004
  • Warshel, A, Sussman, F, King, G. Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process. Biochemistry. 1986;25:8368–8372. doi: 10.1021/bi00374a006
  • Ciordia, M, Perez-Benito, L, Delgado, F, et al. Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process. J Chem Inf Model. 2016;56:1856–1871. doi: 10.1021/acs.jcim.6b00220
  • Pérez-Benito, L, Kernen, H, van Vlijmen, H, et al. Predicting binding free energies of pde2 inhibitors. The difficulties of protein conformation. Sci Rep. 2018;8:4883. doi: 10.1038/s41598-018-23039-5
  • Shivakumar, D, Williams, J, Wu, Y, et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field. J Chem Theory Comput. 2010;6:1509–1519. doi: 10.1021/ct900587b
  • Pan, Y, Gao, D, Yang, W, et al. Free energy perturbation (fep) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants. J Am Chem Soc. 2007;44:13537–13543. doi: 10.1021/ja073724k
  • Smit B, Frenkel D. Understanding molecular simulation: from algorithms to applications. Vol. 1. San Diego (CA): Elsevier; 2001. https://www.elsevier.com/books/understanding-molecular-simulation/frenkel/978-0-12-267351-1
  • Kirkwood, JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3:300–313. doi: 10.1063/1.1749657
  • Widom, B. Some topics in the theory of fluids. J Chem Phys. 1963;39:2808. doi: 10.1063/1.1734110
  • Ferrenberg, AM, Swendsen, RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988;61(23):2635–2638. doi: 10.1103/PhysRevLett.61.2635
  • Ferrenberg, AM, Swendsen, RH. Optimized Monte Carlo data analysis. Phys Rev Lett. 1989;63(12):1195–1198. doi: 10.1103/PhysRevLett.63.1195
  • Tajkorshid, E, Nollert, P, Jensen, MO, et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science. 2002;296(5567):525–530. doi: 10.1126/science.1067778
  • Gao, M, Craig, D, Vogel, V, et al. Identifying unfolding intermediates of fn-iii10 by steered molecular dynamics. J Mol Biol. 2002;323:939–950. doi: 10.1016/S0022-2836(02)01001-X
  • Torras, J, de M Seabra, G, Roitberg, AE. A multiscale treatment of Angeli's salt decomposition. J Chem Theory Comput. 2009;5:37–46. doi: 10.1021/ct800236d
  • Jiang, Y, Zhang, H, Cui, Z, et al. Modeling coordination-directed self-assembly of m2l4 nanocapsule featuring competitive guest encapsulation. J Phys Chem Lett. 2017;8:2082–2086. doi: 10.1021/acs.jpclett.7b00773
  • Wang, Y, Cai, WS, Chen, L, et al. Molecular dynamics simulation reveals how phosphorylation of tyrosine 26 of phosphoglycerate mutase 1 upregulates glycolysis and promotes tumor growth. Oncotarget. 2017;8:12093. doi: 10.18632/oncotarget.14517
  • Zhu, JX, Li, Y, Wang, JZ, et al. Adaptive steered molecular dynamics combined with protein structure networks revealing the mechanism of Y68I/G109P mutations that enhance the catalytic activity of d-psicose 3-epimerase from clostridium bolteae. Front Chem. 2018;6:437. doi: 10.3389/fchem.2018.00437
  • Fan, JR, Li, H, Zhang, HX, et al. Exploring the structure characteristics and major channels of cytochrome P450 2A6, 2A13, and 2E1 with pilocarpine. Biopolymers. 2018;109:e23108. doi: 10.1002/bip.23108
  • Sun, DR, Zheng, QC, Zhang, HX. Molecular dynamics investigation of stereoselective inhibition mechanism of hif-2alpha/arnt heterodimer. J Mol Recognit. 2018;31:e2675. doi: 10.1002/jmr.2675
  • Zhang, Y, Zheng, QC. What are the effects of the serine triad on proton conduction of an influenza B M2 channel? An investigation by molecular dynamics simulations. Phys Chem Chem Phys. 2019;21:8820–8826. doi: 10.1039/C9CP00612E
  • Paramore, S, Ayton, GS, Voth, GA. Extending the fluctuation theorem to describe reaction coordinates. J Chem Phys. 2007;126:051102. doi: 10.1063/1.2463306
  • Hummer, G, Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci USA. 2001;98:3658–3661. doi: 10.1073/pnas.071034098
  • Michaud-Agrawal, N, Denning, EJ, Woolf, TB, et al. Mdanalysis: A toolkit for the analysis of molecular dynamics simulations. J Comput Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787
  • Gowers, RJ, Linke, M, Barnoud, J, et al. MDAnalysis: a python package for the rapid analysis of molecular dynamics simulations. In: Benthall S, Rostrup S, editors. Proceedings of the 15th python in science conference; 2016. p. 98–105.
  • MacKerell AD, Bashford D, Bellott M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. DOI:10.1021/jp973084f
  • Mackerell, AD, Jr, Feig, M, Brooks, CL III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004;25:1400–1415. doi: 10.1002/jcc.20065
  • Philips, JC, Braun, R, Wang, W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.