184
Views
2
CrossRef citations to date
0
Altmetric
Articles

A review on the relaxation dynamics analysis of unentangled polymers with different structures

&
Pages 888-899 | Received 12 Mar 2020, Accepted 06 Aug 2020, Published online: 07 Sep 2020

References

  • Doi M, Edwards SF. The theory of polymer dynamics. Vol. 73. Oxford, UK: Oxford University Press; 1988.
  • De Gennes PG, Gennes PG. Scaling concepts in polymer physics. Ithaca (NY): Cornell University Press; 1979.
  • de Gennes PG. Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys. 1971;55(2):572–579. doi: 10.1063/1.1675789
  • Pearson D, Ver Strate G, Von Meerwall E, et al. Viscosity and self-diffusion coefficient of linear polyethylene. Macromolecules. 1987;20(5):1133–1141. doi: 10.1021/ma00171a044
  • Von Meerwall E, Beckman S, Jang J, et al. Diffusion of liquid n-alkanes: free-volume and density effects. J Chem Phys. 1998;108(10):4299–4304. doi: 10.1063/1.475829
  • Rouse PE Jr. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys. 1953;21(7):1272–1280. doi: 10.1063/1.1699180
  • McCall DW, Douglass DC, Anderson EW. Diffusion in ethylene polymers. IV. J Chem Phys. 1959;30(3):771–773. doi: 10.1063/1.1730042
  • Wong CPJ, Choi P. A free volume theory on the chain length dependence of the diffusivity of linear polymers. Soft Matter. 2019;15(45):9300–9309. doi: 10.1039/C9SM01900F
  • Lodge TP. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys Rev Lett. 1999;83(16):3218. doi: 10.1103/PhysRevLett.83.3218
  • Hur K, Jeong C, Winkler RG, et al. Chain dynamics of ring and linear polyethylene melts from molecular dynamics simulations. Macromolecules. 2011;44(7):2311–2315. doi: 10.1021/ma102659x
  • Brown S, Szamel G. Computer simulation study of the structure and dynamics of ring polymers. J Chem Phys. 1998;109(14):6184–6192. doi: 10.1063/1.477247
  • Brown S, Szamel G. Structure and dynamics of ring polymers. J Chem Phys. 1998;108(12):4705–4708. doi: 10.1063/1.475927
  • Kapnistos M, Lang M, Vlassopoulos D, et al. Unexpected power-law stress relaxation of entangled ring polymers. Nat Mater. 2008;7(12):997. doi: 10.1038/nmat2292
  • Halverson JD, Lee WB, Grest GS, et al. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J Chem Phys. 2011;134(20):204905.
  • Tsolou G, Stratikis N, Baig C, et al. Melt structure and dynamics of unentangled polyethylene rings: Rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues. Macromolecules. 2010;43(24):10692–10713. doi: 10.1021/ma1017555
  • Xu X, Chen J, An L. Simulation studies on architecture dependence of unentangled polymer melts. J Chem Phys. 2015;142(7):074903. doi: 10.1063/1.4908262
  • Grest GS, Fetters LJ, Huang JS, et al. Star polymers: experiment, theory, and simulation. Adv Chem Phys. 2007;94:67.
  • Brown S, Szamel G. Computer simulation of three-arm star polymers. Macromol Theory Simul. 2000;9(1):14–19. doi: 10.1002/(SICI)1521-3919(20000101)9:1<14::AID-MATS14>3.0.CO;2-6
  • Robertson RM, Smith DE. Strong effects of molecular topology on diffusion of entangled DNA molecules. Proc Natl Acad Sci USA. 2007;104(12):4824–4827. doi: 10.1073/pnas.0700137104
  • Harmandaris V, Mavrantzas V, Theodorou D, et al. Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules. 2003;36(4):1376–1387. doi: 10.1021/ma020009g
  • Milner ST, McLeish T. Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett. 1998;81(3):725. doi: 10.1103/PhysRevLett.81.725
  • Rubinstein M. Dynamics of ring polymers in the presence of fixed obstacles. Phys Rev Lett. 1986;57(24):3023. doi: 10.1103/PhysRevLett.57.3023
  • Kalathi JT, Kumar SK, Rubinstein M, et al. Rouse mode analysis of chain relaxation in homopolymer melts. Macromolecules. 2014;47(19):6925–6931. doi: 10.1021/ma500900b
  • Padding J, Briels WJ. Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations. J Chem Phys. 2002;117(2):925–943. doi: 10.1063/1.1481859
  • Bulacu M, van der Giessen E. Effect of bending and torsion rigidity on self-diffusion in polymer melts: a molecular-dynamics study. J Chem Phys. 2005;123(11):114901. doi: 10.1063/1.2035086
  • Wong CPJ, Choi P. Velocity time correlation function of a rouse chain. Comput Mater Sci. 2018;155:320–324. doi: 10.1016/j.commatsci.2018.08.042
  • Wong CPJ, Choi P. Analysis of Brownian dynamics and molecular dynamics data of unentangled polymer melts using proper orthogonal decomposition. Macromol Theory Simul. 2019;28(4):1800072. doi: 10.1002/mats.201800072
  • Ghosh A. Relaxation dynamics of branched polymers. Philadelphia (PA): The Pennsylvania State University; 2007.
  • Kalathi JT, Kumar SK, Rubinstein M, et al. Rouse mode analysis of chain relaxation in polymer nanocomposites. Soft Matter. 2015;11(20):4123–4132. doi: 10.1039/C5SM00754B
  • Masubuchi Y, Takata H, Amamoto Y, et al. Relaxation of Rouse modes for unentangled polymers obtained by molecular simulations. Nihon Reoroji Gakkaishi. 2018;46(4):171–178. doi: 10.1678/rheology.46.171
  • Shaffer JS. Effects of chain topology on polymer dynamics: configurational relaxation in polymer melts. J Chem Phys. 1995;103(2):761–772. doi: 10.1063/1.470108
  • Watanabe H. Slow dynamics in homopolymer liquids. Polymer J. 2009;41(11):929–950. doi: 10.1295/polymj.PJ2009148
  • Mitsutake A, Iijima H, Takano H. Relaxation mode analysis of a peptide system: comparison with principal component analysis. J Chem Phys. 2011;135(16):10B623. doi: 10.1063/1.3652959
  • Mitsutake A, Takano H. Relaxation mode analysis for molecular dynamics simulations of proteins. Biophys Rev. 2018;10(2):375–389. doi: 10.1007/s12551-018-0406-7
  • Hagita K, Takano H. Relaxation mode analysis of a single polymer chain in a melt. J Phys Soc Jpn. 2002;71(3):673–676. doi: 10.1143/JPSJ.71.673
  • Nagai T, Mitsutake A, Takano H. Principal component relaxation mode analysis of an all-atom molecular dynamics simulation of human lysozyme. J Phys Soc Jpn. 2013;82(2):023803. doi: 10.7566/JPSJ.82.023803
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102(14):2569–2577. doi: 10.1021/jp972543+
  • Lee WB, Kremer K. Entangled polymer melts: relation between plateau modulus and stress autocorrelation function. Macromolecules. 2009;42(16):6270–6276. doi: 10.1021/ma9008498
  • Chapman S, Cowling TG. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge, UK: Cambridge University Press; 1970.
  • Mondello M, Grest GS, Webb III EB, et al. Dynamics of n-alkanes: comparison to Rouse model. J Chem Phys. 1998;109(2):798–805. doi: 10.1063/1.476619

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.