331
Views
4
CrossRef citations to date
0
Altmetric
Articles

Tensile properties of hydrogenated hybrid graphene–hexagonal boron nitride nanosheets: a reactive force field study

ORCID Icon & ORCID Icon
Pages 1220-1229 | Received 29 May 2020, Accepted 05 Aug 2020, Published online: 30 Aug 2020

References

  • Zeng X, Ye L, Yu S, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale. 2015;7(15):6774–6781.
  • Ovid’Ko I. Mechanical properties of graphene. Rev Adv Mater Sci. 2013;34(1):1–11.
  • Xiong J, Zhu W, Li H, et al. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry. 2015;17(3):1647–1656.
  • Avouris P, Xia F. Graphene applications in electronics and photonics. Mrs Bulletin. 2012;37(12):1225–1234.
  • Wang X, Li X, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia. Science. 2009;324(5928):768–771.
  • Martins T, Miwa RD, Da Silva AJ, et al. Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett. 2007;98(19):196803.
  • Ci L, Song L, Jin C, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater. 2010;9(5):430–435.
  • Giovannetti G, Khomyakov PA, Brocks G, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B. 2007;76(7):073103.
  • Lebegue S, Klintenberg M, Eriksson O, et al. Accurate electronic band gap of pure and functionalized graphene from GW calculations. Phys Rev B. 2009;79(24):245117.
  • Liang Q, Jiang J, Meng R, et al. Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control. Phys Chem Chem Phys. 2016;18(24):16386–16395.
  • Sun Y, Yu G, Liu J, et al. Realizing diverse electronic and magnetic properties in hybrid zigzag BNC nanoribbons via hydrogenation. Phys Chem Chem Phys. 2016;18(2):1326–1340.
  • Chen X, Lian J, Jiang Q. Band-gap modulation in hydrogenated graphene/boron nitride heterostructures: the role of heterogeneous interface. Phys Rev B. 2012;86(12):125437.
  • Sharma BB, Parashar A. A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterials. Crit Rev Solid State Mater Sci. 2020;45(2):134–170.
  • Vijayaraghavan V, Zhang L. Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials. 2018;8(7):546.
  • Zhao S, Xue J. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J Phys D Appl Phys. 2013;46(13):135303.
  • Peng Q, Zamiri AR, Ji W, et al. Elastic properties of hybrid graphene/boron nitride monolayer. Acta Mech. 2012;223(12):2591–2596.
  • Eshkalak KE, Sadeghzadeh S, Jalaly M. The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 2018;270:82–86.
  • Sharma BB, Parashar A. Atomistic simulations to study the effect of water molecules on the mechanical behavior of functionalized and non-functionalized boron nitride nanosheets. Comput Mater Sci. 2019;169:109092.
  • Kumar R, Rajasekaran G, Parashar A. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study. Nanotechnology. 2016;27(8):085706.
  • Rajasekaran G, Kumar R, Parashar A. Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater Res Exp. 2016;3(3):035011.
  • Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater. 2016;2(1):1–14.
  • Rimsza J, Yeon J, Van Duin A, et al. Water interactions with nanoporous silica: comparison of ReaxFF and ab initio based molecular dynamics simulations. J Phys Chem C. 2016;120(43):24803–24816.
  • Hubin PO, Jacquemin D, Leherte L, et al. Ab initio quantum chemical and ReaxFF-based study of the intramolecular iminium–enamine conversion in a proline-catalyzed reaction. In: Champagne B, Deleuze M, De Proft F, et al., editors. Theoret Chem Belgium. Berlin: Springer; 2014. p. 205–215.
  • Van Duin AC, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105(41):9396–9409.
  • Valentini P, Schwartzentruber TE, Cozmuta I. Molecular dynamics simulation of O 2 sticking on Pt (111) using the ab initio based ReaxFF reactive force field. J Chem Phys. 2010;133(8):084703.
  • Yu Y, Wang B, Wang M, et al. Revisiting silica with ReaxFF: towards improved predictions of glass structure and properties via reactive molecular dynamics. J Non Cryst Solids. 2016;443:148–154.
  • Han SS, van Duin AC, Goddard WA, et al. Optimization and application of lithium parameters for the reactive force field, ReaxFF. J Phys Chem A. 2005;109(20):4575–4582.
  • Kim S-Y, Kumar N, Persson P, et al. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir. 2013;29(25):7838–7846.
  • Raymand D, van Duin AC, Baudin M, et al. A reactive force field (ReaxFF) for zinc oxide. Surf Sci. 2008;602(5):1020–1031.
  • Qi T, Bauschlicher Jr CW, Lawson JW, et al. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. molecular dynamics simulations. J Phys Chem A. 2013;117(44):11115–11125.
  • Roy P, Srivastava SK. Nanomaterials for Electrochemical energy Storage devices. Hoboken: Wiley Online Library; 2019.
  • Han SS, Kang JK, Lee HM, et al. Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. J Chem Phys. 2005;123(11):114704.
  • Kumar R, Mertiny P, Parashar A. Effects of different hydrogenation regimes on mechanical properties of h-BN: a reactive force field study. J Phys Chem C. 2016;120(38):21932–21938.
  • Medhekar NV, Ramasubramaniam A, Ruoff RS, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano. 2010;4(4):2300–2306.
  • Compton OC, Cranford SW, Putz KW, et al. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano. 2012;6(3):2008–2019.
  • Flores MZ, Autreto PA, Legoas SB, et al. Graphene to graphane: a theoretical study. Nanotechnology. 2009;20(46):465704.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Sandia National Labs., Albuquerque, NM (United States); 1993.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18(1):015012.
  • Pai SJ, Yeo BC, Han SS. Development of the ReaxFF CBN reactive force field for the improved design of liquid CBN hydrogen storage materials. Phys Chem Chem Phys. 2016;18(3):1818–1827.
  • Vijayaraghavan V, Dethan JFN, Garg A. Tensile loading characteristics of hydrogen stored carbon nanotubes in PEM fuel cell operating conditions using molecular dynamics simulation. Mol Simul. 2018;44(9):736–742.
  • Vijayaraghavan V, Dethan JFN, Garg A. Nanomechanics and modelling of hydrogen stored carbon nanotubes under compression for PEM fuel cell applications. Comput Mater Sci. 2018;146:176–183.
  • Sadeghzadeh S, Rezapour N. The mechanical design of graphene nanodiodes and nanotransistors: geometry, temperature and strain effects. RSC Adv. 2016;6(89):86324–86333.
  • Wei X, Xiao S, Li F, et al. Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett. 2015;15(1):689–694.
  • Pei Q, Zhang Y, Shenoy V. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon N Y. 2010;48(3):898–904.
  • Xiong Q-L, Tian XG. Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: a molecular dynamics study. AIP Adv. 2015;5(10):107215.
  • Xiong Y, Xiong C, Wei S, et al. Study on the bonding state for carbon–boron nitrogen with different ball milling time. Appl Surf Sci. 2006;253(5):2515–2521.
  • Mortazavi B, Ahzi S, Toniazzo V, et al. Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study. Phys Lett A. 2012;376(12-13):1146–1153.
  • Topsakal M, Ciraci S. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Phys Rev B. 2010;81(2):024107.
  • Vijayaraghavan V, Dethan JFN, Gao L. Torsional mechanics of single walled carbon nanotubes with hydrogen for energy storage and fuel cell applications. Sci China Phys Mech Astron. 2019;62(3):34611.
  • Zhou L, Shi S. Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput Mater Sci. 2002;23(1-4):166–174.
  • Jeng Y-R, Tsai P-C, Fang T-H. Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes. J Phys Chem Solids. 2004;65(11):1849–1856.
  • Zhu F, Liao H, Tang K, et al. Molecular dynamics study on the effect of temperature on the tensile properties of single-walled carbon nanotubes with a Ni-coating. J Nanomater. 2015;2015.
  • Yazdani H, Hatami K, Eftekhari M. Mechanical properties of single-walled carbon nanotubes: a comprehensive molecular dynamics study. Mater Res Exp. 2017;4(5):055015.
  • Cheng H-C, Yu C-F, Chen W-H. Size, temperature, and strain-rate dependence on tensile mechanical behaviors of Ni3Sn4 intermetallic compound using molecular dynamics simulation. Journal of nanomaterials. 2004;2004:1–17.
  • Zhou X, Liu X, Sansoz F, et al. Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites. Appl Phys A. 2018;124(7):506.
  • Kang Y, Zhou D, Wu Q, et al. Fully atomistic molecular dynamics computation of physico-mechanical properties of PB, PS, and SBS. Nanomaterials. 2019;9(8):1088.
  • Davis JR. Tensile testing. Novelty: ASM International; 2004.
  • Islam MM, Ostadhossein A, Borodin O, et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Phys Chem Chem Phys. 2015;17(5):3383–3393.
  • Zhang J, Wang C. Mechanical properties of hybrid boron nitride–carbon nanotubes. J Phys D Appl Phys. 2016;49(15):155305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.