170
Views
0
CrossRef citations to date
0
Altmetric
Articles

Intrinsic bending stiffness of narrow graphene nanoribbons from quantum mechanics lattice dynamics calculations

, &
Pages 560-564 | Received 02 May 2020, Accepted 17 Dec 2020, Published online: 19 Jan 2021

References

  • Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006;312(5777):1191–1196.
  • Campos-Delgado J, Romo-Herrera JM, Jia X, et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 2008;8(9):2773–2778.
  • Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009;458(7240):877–880.
  • Dutta S, Pati SK. Novel properties of graphene nanoribbons: a review. J Mater Chem. 2010;20(38):8207–8223.
  • Celis A, Nair M, Taleb-Ibrahimi A, et al. Graphene nanoribbons: fabrication, properties and devices. J Phys D: Appl Phys. 2016;49(14):143001.
  • Faccio R, Denis PA, Pardo H, et al. Mechanical properties of graphene nanoribbons. J Phys Condens Matter. 2009;21(28):285304.
  • Chu Y, Ragab T, Gautreau P, et al. Mechanical properties of hydrogen edge–passivated chiral graphene nanoribbons. J Nanomech Micromech. 2015;5(4):04015001.
  • Tabarraei A, Shadalou S, Song J-H. Mechanical properties of graphene nanoribbons with disordered edges. Comput Mater Sci. 2015;96:10–19.
  • Shenoy V, Reddy C, Ramasubramaniam A, et al. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys Rev Lett. 2008;101(24):245501.
  • Han G-R, Sun J-S, Jiang J-W. An analytic investigation for the edge effect on mechanical properties of graphene nanoribbons. J Appl Phys. 2018;123(6):064301.
  • Bets KV, Yakobson BI. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2009;2(2):161–166.
  • Kang JW, Lee S. Molecular dynamics study on the bending rigidity of graphene nanoribbons. Comp Mater Sci. 2013;74:107–113.
  • Giomi L, Mahadevan L. Statistical mechanics of developable ribbons. Phys Rev Lett. 2010;104(23):238104.
  • Kang JW, Kim H-W, Kim K-S, et al. Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator. Curr Appl Phys. 2013;13(4):789–794.
  • Sajadi B, van Hemert S, Arash B, et al. Size- and temperature-dependent bending rigidity of graphene using modal analysis. Carbon N Y. 2018;139:334–341.
  • Lu Q, Gao W, Huang R. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modell Simul Mater Sci Eng. 2011;19(5):054006.
  • Shepelev I, Chetverikov A, Dmitriev S, et al. Shock waves in graphene and boron nitride. Comp Mater Sci. 2020;177:109549.
  • Savin AV, Korznikova EA, Dmitriev SV. Dynamics of surface graphene ripplocations on a flat graphite substrate. Phys Rev B. 2019;99(23):235411.
  • Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press; 1954.
  • Elstner M. The SCC-DFTB method and its application to biological systems. Theor Chem Acc. 2006;116(1-3):316–325.
  • Kuang Y, Lindsay L, Huang B. Unusual enhancement in intrinsic thermal conductivity of multilayer graphene by tensile strains. Nano Lett. 2015;15(9):6121–6127.
  • Bartok AP, Payne MC, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010;104(13):136403.
  • Wang X, Kaviany M, Huang B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale. 2017;9(45):18022–18031.
  • Togo A. Phonopy v. 1.8. 5. Avaliable from: http://phonopy sourceforge net. 2009.
  • Achenbach J. Wave propagation in elastic solids. Vol. 16. Amsterdam: Elsevier; 2012.
  • Lindsay L, Broido D, Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys Rev B. 2011;83(23):235428.
  • Jiang J-W, Qi Z, Park HS, et al. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology. 2013;24(43):435705.
  • Zhang D-B, Akatyeva E, Dumitrică T. Bending ultrathin graphene at the margins of continuum mechanics. Phys Rev Lett. 2011;106(25):255503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.