622
Views
0
CrossRef citations to date
0
Altmetric
Articles

Two-dimensional core-softened model with water like properties: solvation of non-polar solute

&
Pages 973-981 | Received 24 Mar 2021, Accepted 10 May 2021, Published online: 02 Jun 2021

References

  • Barker JA, Henderson D, Abraham FF. Phase diagram of the two-dimensional Lennard-Jones system: evidence for first-order transitions. Phys A. 1981;106:226–238.
  • Phillips JM, Bruch LW, Murphy RD. The two-dimensional Lennard-Jones system: sublimation, vaporization, and melting. J Chem Phys. 1981;75:5097–5109.
  • Scalise OH, Zarragoicoechea GJ, Gonzalez LE, et al. Phase equilibria of the two-dimensional Lennard-Jones fluid: reference systems and perturbation theories. Mol Phys. 1998;93:751–755.
  • Scalise OH. Vapour-liquid coexistence in a quasi two-dimensional hard dipolar fluid. Phys Chem Liq. 1998;36:179–185.
  • Zarragoicoechea GJ. A model phospholipid monolayer: a computer simulation study. Mol Phys. 1999;96:1109–1113.
  • Scalise OH, Zarragoicoechea GJ, Silbert M. Critical behaviour of two-dimensional Lennard-Jones fluid mixtures: a mean field study. Phys Chem Chem Phys. 1999;1:4241–4244.
  • Scalise OH. Type I gas-liquid equilibria of a two-dimensional Lennard-Jones binary mixtureFluid Phase Equilib. 2001;182:59–64.
  • Birdi KS. Lipid and bipolymer monolayers at liquid interfaces. New York: Plenum Press; 1989.
  • Toxvaerd S. The mobile-layer model for adsorption. Mol Phys. 1975;29:373–379.
  • Smit B, Frenkel D. Vapor-liquid equilibria of the two-dimensional Lennard-Jones fluid(s). J Chem Phys. 1991;94:5663–5668.
  • Toxvaerd S. Melting in a two-dimensional Lennard-Jones system. J Chem Phys. 1978;69:4750–4752.
  • Abraham FF. Melting in two dimensions is first order: an isothermal-isobaric Monte Carlo study. Phys Rev Lett. 1980;44:463–466.
  • Puntam FA, Fort T. Physical adsorption of patchwise heterogeneous surfaces. I. Heterogeneity, two-dimensional phase transitions, and spreading pressure of the krypton-graphitized carbon black system near 100.deg.K. J Phys Chem. 1975;79:459–467.
  • Thomy A, Duval X. Adsorption de molecules simples sur graphite. J Chim Phys. 1970;67:1101–1110.
  • Silverstein KAT, Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc. 1998;120:3166–3175.
  • Southall NT, Dill KA. A view of the hydrophobic effect. J Phys Chem B. 2002;106:521–533.
  • Urbic T, Vlachy V, Kalyuzhnyi Yu. V, et al. A two-dimensional model of water: theory and computer simulations. J Chem Phys. 2000;112:2843–2848.
  • Urbic T, Vlachy V, Kalyuzhnyi Yu. V, et al. A two-dimensional model of water: solvation of nonpolar solutes. J Chem Phys. 2002;116:723–729.
  • Urbic T, Vlachy V, Kalyuzhnyi Yu.V, et al. Orientation-dependent integral equation theory for a two-dimensional model of water. J Chem Phys. 2003;118:5516–5525.
  • Ben–Naim AJ. Statistical mechanics of “Waterlike” particles in two dimensions. I. physical model and application of the Percus–Yevick equation. Chem Phys. 1971;54:3682.
  • Eisenberg D, Kauzmann W. The structure and properties of water. Oxford: Oxford University Press; 1969.
  • Franks F. Water: a comprehensive treatise. New York: Plenum; 19721780.
  • Stillinger FH. Water Revisited. Sci. 1980;209:451–457.
  • Sharma R, Chakraborty SN, Chakravarty C. Entropy, diffusivity, and structural order in liquids with waterlike anomalies. J Chem Phys. 2006;125:204501.
  • Poole PH, Hemmati M, Angell CA. Comparison of thermodynamic properties of simulated liquid silica and water. Phys Rev Lett. 1997;79:2281–2284.
  • Shell MS, Debenedetti PG, Panagiotopoulos AZ. Generalization of the Wang-Landau method for off-lattice simulations. Phys Rev E. 2002;66:056703.
  • Hemmer PC, Stell G. Fluids with several phase transitions. Phys Rev Lett. 1970;24:1284–1287.
  • de Oliveira AB, Netz PA, Barbosa MC. Which mechanism underlies the water-like anomalies in core-softened potentials?. Eur Phys J B. 2008;64:481–486.
  • Sastry S, Angell CA. Liquid-liquid phase transition in supercooled silicon. Nat Mater. 2003;2:739–743.
  • Angell CA, Bressel RD, Hemmati M, et al. Water and its anomalies in perspective: tetrahedral liquids with and without liquid–liquid phase transitions. Phys Chem Chem Phys. 2000;2:1559.
  • Mon KK, Ashcroft NW, Chester GV. Core polarization and the structure of simple metals. Phys Rev B. 1979;19:5103–5122.
  • Levesque D, Weis JJ. Structure factor of a system with shouldered hard sphere potential. Phys Lett A. 1977;60:473–474.
  • Cummings PT, Stell G. Mean spherical approximation for a model liquid metal potential. Mol Phys. 1981;43:1267–1291.
  • Voronel A, Paperno I, Rabinovich S, et al. New critical point at the vicinity of the freezing temperature of K2Cs. Phys Rev Lett. 1983;50:247.
  • Velasco E, Mederos L, Navascues G, et al. Complex phase behavior induced by repulsive interactions. Phys Rev Lett. 2000;85:122.
  • Poole PH, Sciortino F, Essmann U, et al. Phase behaviour of metastable water. Nature. 1992;360:324–328.
  • Buldyrev SV, Franzese G, Giovambattista N, et al. Models for a liquid-liquid phase transition. Phys A. 2002;304:23–42.
  • Urbic T. Liquid-liquid phase transition in a two-dimensional system with anomalous liquid properties. Phys Rev E. 2013;88:062303.
  • Almudallal AM, Buldyrev SV, Saika-Voivod I. Phase diagram of a two-dimensional system with anomalous liquid properties. J Chem Phys. 2012;137:034507.
  • Franzese G, Malescio G, Skibinsky A, et al. Generic mechanism for generating a liquid-liquid phase transition. Nature. 2001;409:692–695.
  • Bizjak A, Urbic T, Vlachy V, et al. The three–dimensional “Mercedes Benz” model of water. Acta Chim Slov. 2007;54:532.
  • Bizjak A, Urbic T, Vlachy V, et al. Theory for the three-dimensional Mercedes-Benz model of water. J Chem Phys. 2009;131:194504.
  • Sadr-Lahijany MR, Scala A, Buldyrev SV, et al. Liquid-state anomalies and the Stell-Hemmer core-softened potential. Phys Rev Lett. 1998;81:4895–4898.
  • Sadr-Lahijany MR, Scala A, Buldyrev SV, et al. Waterlike anomalies for core-softened models of fluids: one dimension. Phys Rev E. 1999;60:6714–6721.
  • Scala A, Reza Sadr-Lahijany M, Giovambattista N, et al. Waterlike anomalies for core-softened models of fluids: two-dimensional systems. Phys Rev E. 2001;63:041202.
  • Frenkel D, Smit B. Molecular simulation: from algorithms to applications. New York: Academic Press; 2000.
  • Ornstein LS, Zernike F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc Akad Sci (Amsterdam). 1914;17:793.
  • Morita T, Hiroike K. A new approach to the theory of classical fluids. I: Prog Theor Phys. 1960;23:829.
  • Percus JK, Yevick GJ. Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev. 1958;110:1–13.
  • Percus JK. Approximation methods in classical statistical mechanics. Phys Rev Lett. 1962;8:462–463.
  • Kovalenko A, Hirata F. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys. 1999;110:10095–10112.
  • Rick SW, Haymet ADJ. Density functional theory for the freezing of Lennard-Jones binary mixtures. J Chem Phys. 1989;90:1188–1199.
  • Talman JD. Numerical Fourier and Bessel transforms in logarithmic variables. J Comput Phys. 1978;29:35–48.
  • Urbic T, Dias CL. Properties of the Lennard-Jones dimeric fluid in two dimensions: an integral equation study. J Chem Phys. 2014;140:094703.
  • Urbic T. Properties of the two-dimensional heterogeneous Lennard-Jones dimers: an integral equation study. J Chem Phys. 2016;145:194503.