186
Views
0
CrossRef citations to date
0
Altmetric
Articles

Interatomic potential for metal diborides

, &
Pages 982-987 | Received 30 Nov 2020, Accepted 21 May 2021, Published online: 06 Jun 2021

References

  • Golla BR, Mukhopadhyay A, Basu B, et al. Review on ultra-high temperature boride ceramics. Prog Mater Sci. 2020;111:100651.
  • Mitterer C. Borides in thin film technology. J Solid State Chem. 1997;133:279–291.
  • Li H, Wen P, Li Q, et al. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv Energy Mater. 2017;7:1700513.
  • Qin G, Cui Q, Du A, et al. Transition metal diborides: a new type of high-performance electro-catalysts for nitrogen reduction. ChemCatChem. 2019;11:2624–2633.
  • Lim CS, Sofer Z, Mazánek V, et al. Layered titanium diboride: towards exfoliation and electrochemical applications. Nanoscale. 2015;7:12527–12534.
  • Jothi PR, Yubuta K, Fokwa BPT. A simple, general synthetic route toward nanoscale transition metal borides. Adv Mater. 2018;30:1704181.
  • An Y, Gong S, Hou Y, et al. Mob2: a new multifunctional transition metal diboride monolayer. J Phys Condens Matter. 2019;32:055503.
  • Hu X, Guo S, Zhang S, et al. Two-dimensional transition metal diborides: promising dirac electrocatalysts with large reaction regions toward efficient N2 fixation. J Mater Chem A. 2019;7:25887–25893.
  • Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63–64.
  • Withanage WK, Penmatsa SV, Acharya N, et al. Growth of magnesium diboride thin films on boron buffered Si and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. Supercond Sci Technol. 2018;31:075009.
  • Daw MS, Lawson JW, Bauschlicher CW. Interatomic potentials for zirconium diboride and hafnium diboride. Comput Mater Sci. 2011;50:2828–2835.
  • Guo YD, Chen XR, Yang XD, et al. Elastic constants of superconducting MgB2 from molecular dynamics simulations with shell model. Commun Theor Phys. 2005;44:936–940.
  • Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Letters. 1983;50:1285–1288.
  • Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1983;29:6443–6453.
  • Vajeeston P, Ravindran P, Ravi C, et al. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys Rev B. 2001;63:045115.
  • Zalizniak VE, Zolotov OA. Towards a universal embedded atom method interatomic potential for pure metals. J Siberian Federal Univ Math Phys. 2015;8:230–249.
  • Zalizniak VE, Zolotov OA. Embedded-atom method interatomic potential for boron nanostructures. J Mol Model. 2019;25:165.
  • Mishin Y, Mehl MJ, Papaconstantopoulos DA. Embedded-atom potential for B2-NiAl. Phys Rev B. 2002;65(14):224114.
  • Loa I, Kunc K, Syassen K, et al. Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys Rev B. 2002;66:134101.
  • Jorgensen JD, Hinks DG, Short S. Lattice properties of MgB2 versus temperature and pressure. Phys Rev B. 2001;63:224522.
  • Vogt T, Schneider G, Hriljac JA, et al. Compressibility and electronic structure of MgB2 up to 8 GPa. Phys Rev B. 2001;63:R220505.
  • Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105:709–720.
  • Curtarolo S, Setyawan W, Wang S, et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. 2012;58:227–235.
  • Jain A, Ong SP, Hautier G, et al. The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.
  • de Jong M, Chen W, Angsten T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015;2:150009.
  • Fast L, Wills JM, Johansson B, et al. Elastic constants of hexagonal transition metals: theory. Phys Rev B. 1995;51:17431.
  • Chase MW. NIST-JANAF themochemical tables, fourth edition. J phys chem Ref data Monograph. 1998;276(9 ):279.
  • Zolotov OA, Zalizniak VE. Accurate energy conservation in molecular dynamics simulation. nanosystems: physics, chemistry. Mathematics. 2013;4:657–669.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–1276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.