115
Views
0
CrossRef citations to date
0
Altmetric
Articles

Long range corrections for inhomogeneous fluids containing a droplet or a bubble

ORCID Icon, ORCID Icon & ORCID Icon
Pages 73-86 | Received 15 Mar 2021, Accepted 05 Jul 2021, Published online: 28 Jul 2021

References

  • Nicolas JJ, Gubbins KE, Streett WB, et al. Equation of state for the Lennard–Jones fluid. Mol Phys. 1979;37(5):1429–1454.
  • Allen MP, Tildesley DJ. Computer simulations of liquids. Oxford (UK): Oxford University Press; 1989.
  • Rusanov AI, Brodskaya EN. The molecular dynamics simulation of a small drop. J Colloid Interface Sci. 1977;62(3):542–555.
  • Thompson SM, Gubbins KE, Walton JPRB, et al. A molecular dynamics study of liquid drops. J Chem Phys. 1984;81(1):530–542.
  • Nijmeijer MJP, Bruin C, van Woerkom AB, et al. Molecular dynamics of the surface tension of a drop. J Chem Phys. 1991;96(1):565–576.
  • Vrabec J, Kedia GK, Fuchs G, et al. Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties. Mol Phys. 2006;104(9):1509–1527.
  • Landry ES, Mikkilineni S, Paharia M, et al. Droplet evaporation: a molecular dynamics investigation. J Appl Phys. 2007;102(12):124301.
  • Trokhymchuk A, Alejandre J. Computer simulations of liquid/vapor interface in Lennard–Jones fluids: some questions and answers. J Chem Phys. 1999;111(18):8510–8523.
  • Hołyst R, Litniewski M. Evaporation into vacuum: mass flux from momentum flux and the Hertz–Knudsen relation revisited. J Chem Phys. 2009;130(7):074707.
  • Horsch M, Hasse H. Molecular simulation of nano-dispersed fluid phases. Chem Eng Sci. 2014;104:235–244.
  • Homes S, Heinen M, Vrabec J, et al. Evaporation driven by conductive heat transport. Mol Phys. 2020;0:e1836410.
  • Baidakov VG, Chernykh GG, Protsenko SP. Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard–Jones systems. Chem Phys Lett. 2000;321(3-4):315–320.
  • Stephan S, Hasse H. Influence of dispersive long-range interactions on properties of vapour liquid equilibria and interfaces of binary Lennard–Jones mixtures. Mol Phys. 2020;118(9–10):e1699185.
  • Galliero G, Piñeiro MM, Mendiboure B, et al. Interfacial properties of the Mie n-6 fluid: molecular simulations and gradient theory results. J Chem Phys. 2009;130(10):104704.
  • Chapela GA, Saville G, Thompson SM, et al. Computer simulation of a gas–liquid surface. Part 1. J Chem Soc Faraday Trans 2. 1977;73(7):1133–1144.
  • Blokhuis EM, Bedeaux D, Holcomb CD, et al. Tail corrections to the surface tension of a Lennard–Jones liquid–vapour interface. Mol Phys. 1995;85(3):665–669.
  • Salomons E, Mareschal M. Atomistic simulation of liquid-vapour coexistence: binary mixtures. J Phys Condens Matter. 1991;3(20):9215–9228.
  • Harris JG. Liquid-Vapor interfaces of alkane oligomers, structure and thermodynamics from molecular dynamics simulations of chemically realistic models. J Phys Chem. 1992;96(12):5077–5086.
  • Mecke M, Winkelmann J, Fischer J. Molecular dynamics simulation of the liquid–vapor interface: the Lennard–Jones fluid. J Chem Phys. 1997;107(21):9264–9270.
  • Janeček J. Long range corrections in inhomogeneous simulations. J Phys Chem B. 2006;110(12):6264–6269.
  • Werth S, Rutkai G, Vrabec J, et al. Long-range correction for multi-site Lennard–Jones models and planar interfaces. Mol Phys. 2014;112(17):2227–2234.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577-8593.
  • in 't Veld PJ, Ismail AE, Grest GS. Application of Ewald summations to long-range dispersion forces. J Chem Phys. 2007;127(14):144711.
  • Bourasseau E, Malfreyt P, Ghoufi A. Surface tension and long range corrections of cylindrical interfaces. J Chem Phys. 2015;143(23):234708.
  • Goujon F, Bêche B, Malfreyt P, et al. Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. J Chem Phys. 2018;148(9):094702.
  • Kumar VA, Sathian SP. Evaporation of a liquid droplet in the presence of a nanoparticle. J Heat Transfer. 2018;140(5):054501.
  • Malijevský A, Jackson G. A perspective on the interfacial properties of nanoscopic liquid drops. J Phys Condens Matter. 2012;24(46):464121.
  • Hołyst R, Litniewski M. Heat transfer at the nanoscale: evaporation of nanodroplets. Phys Rev Lett. 2008;100(5):055701.
  • Jung J, Jang E, Shoaib MA, et al. Droplet formation and growth inside a polymer network: a molecular dynamics simulation study. J Chem Phys. 2016;144(13):134502.
  • Park SH, Weng JG, Tien CL. A molecular dynamics study on surface tension of microbubbles. Int J Heat Mass Transfer. 2001;44(10):1849–1856.
  • Xiao C, Heyes DM, Powles JG. The collapsing bubble in a liquid by molecular dynamics simulations. Mol Phys. 2002;100(21):3451–3468.
  • Yamamoto T, Ohnishi S. Nano bubbles in liquid of a noble-gas mixture. Phys Chem Chem Phys. 2010;12(5):1033–1037.
  • Nejad HR, Ghassemi M, Langroudi SMM, et al. A molecular dynamics study of nano-bubble surface tension. Mol Sim. 2011;37(1):23–30.
  • Lustig R. Angle-average for the powers of the distance between two separated vectors. Mol Phys. 1988;65(1):175–179.
  • Gallavotti G. Statistical mechanics: a short treatise. Heidelberg: Springer-Verlag Berlin; 1999.
  • Jones JE. On the determination of molecular fields. – I. From the variation of the viscosity of a gas with temperature. Proc R Soc Lond A. 1924;106(738):441–462.
  • Jones JE. On the determination of molecular fields. – II. From the equation of state of a gas. Proc R Soc Lond A. 1924;106(738):463–477.
  • Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 1950;18(6):817–829.
  • Rutkai G, Thol M, Span R, et al. How well does the Lennard–Jones potential represent the thermodynamic properties of noble gases?. Mol Phys. 2017;115(9–12):1104–1121.
  • Saager B, Fischer J. Predictive power of effective intermolecular pair potentials: MD simulation results for methane up to 1000 MPa. Fluid Ph Equilibria. 1990;57(1-2):35–46.
  • Mie G. Zur kinetischen Theorie der einatomigen Körper. Ann Phys. 1903;316(8):657–697.
  • Werth S, Stöbener K, Horsch M, et al. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Mol Phys. 2017;115(9–12):1017–1030.
  • Janeček J, Said-Aizpuru O, Paricaud P. Long range corrections for inhomogeneous simulations of Mie n–m potential. J Chem Theory Comput. 2017;13(9):4482–4491.
  • Niethammer C, Becker S, Bernreuther M, et al. ls1 mardyn: the massively parallel molecular dynamics code for large systems. J Chem Theory Comput. 2014;10(10):4455–4464.
  • Fincham D. Leapfrog rotational algorithms. Mol Sim. 1992;8(3–5):165–178.
  • Lotfi A, Vrabec J, Fischer J. Vapour liquid equilibria of the Lennard–Jones fluid from the NpT plus test particle method. Mol Phys. 1992;76(6):1319–1333.
  • Stoll J, Vrabec J, Hasse H. Comprehensive study of the vapour-liquid equilibria of the pure two-centre Lennard–Jones plus pointdipole fluid. Fluid Ph Equilibria. 2003;209(1):29–53.
  • Möller D, Fischer J. Vapour liquid equilibrium of a pure fluid from test particle method in combination with NpT molecular dynamics simulations. Mol Phys. 1990;69(3):463–473.
  • Werth S, Lishchuk Sv, Horsch M, et al. The influence of the liquid slab thickness on the planar vapor–liquid interfacial tension. Physica A. 2013;392(10):2359–2367.
  • Werth S, Horsch M, Hasse H. Surface tension of the two center Lennard–Jones plus point dipole fluid. J Chem Phys. 2016;144(5):054702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.