172
Views
1
CrossRef citations to date
0
Altmetric
Articles

Conformations, inter-molecular structure and hydrogen bond dynamics of neutral and cationic poly(vinyl amine) in aqueous solution

&
Pages 1299-1312 | Received 07 Dec 2020, Accepted 09 Aug 2021, Published online: 31 Aug 2021

References

  • Tanford C. Physical chemistry of macromolecules. New York: Wiley; 1961.
  • Oosawa F. Polyelectrolytes. New York: Marcel Dekker; 1971.
  • Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Oxford University Press; 1986.
  • Förster S, Schmidt M. Physical properties of polymers. Berlin, Heidelberg: Springer; 1995. 2, Polyelectrolyte in solution; p. 51–133.
  • Rubingh DN, Holland PM. editors. Cationic surfactants: physical chemistry. Boca Raton, FL: CRC Press; 1991. (Surfactant Science Series Vol. 37)
  • Dobrynin AV, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci. 2005;30:1049–1118.
  • Wang Q, Taniguchi T, Fredrickson GH. Self-consistent field theory of polyelectrolyte systems. J Phys Chem B. 2005;109:9855–9856.
  • Stevens MJ, Kremer K. The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study. J Chem Phys. 1995;103:1669–1690.
  • Muthukumar M. Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J Chem Phys. 2004;120:9343–9350.
  • Yethiraj A. Theory for chain conformations and static structure of dilute and semidilute polyelectrolyte solutions. J Chem Phys. 1998;108:1184–1192.
  • Loh P, Deen GR, Vollmer D, et al. Collapse of linear polyelectrolyte chains in a poor solvent: when does a collapsing polyelectrolyte collect its counter-ions? Macromolecules. 2008;41:9352–9358.
  • Sulatha MS, Natarajan U. Molecular dynamics simulations of PAA–PMA polyelectrolyte copolymers in dilute aqueous solution: chain conformations and hydration properties. Ind Eng Chem Res. 2012;51:10833–10839.
  • Sappidi P, Natarajan U. Polyelectrolyte conformational transition in aqueous solvent mixture influenced by hydrophobic interactions and hydrogen bonding effects: PAA–water–ethanol. J Mol Graph Model. 2016;64:60–74.
  • Sappidi P, Muralidharan SS, Natarajan U. Conformations and hydration structure of hydrophobic polyelectrolyte atacticpoly(ethacrylic acid) in dilute aqueous solution as a function of neutralisation. Mol Simul. 2014;40:295–305.
  • Gupta AK, Natarajan U. Tacticity effects on conformational structure and hydration of poly-(methacrylic acid) in aqueous solutions-a molecular dynamics simulation study. Mol Simul. 2016;42:725–736.
  • Chockalingam R, Natarajan U. Structure and solvation thermodynamics of asymmetric poly (acrylic acid)-b-polystyrene polyelectrolyte block copolymer micelle in water: effect of charge density and chemical composition. Polymer (Guildf). 2018;158:103–119.
  • Mintis DG, Mavrantzas VG. Effect of pH and molecular length on the structure and dynamics of short poly(acrylic acid) in dilute solution: detailed molecular dynamics study. J Phys Chem B. 2019;123:4204–4219.
  • Yao G, Zhao J, Ramisetti SB, et al. Atomistic molecular dynamic simulation of dilute poly(acrylic acid) solution: effects of simulation size sensitivity and ionic strength. Ind Eng Chem Res. 2018;57:17129–17141.
  • Katiyar RS, Jha PK. Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers. Polymer (Guildf). 2017;114:266–276.
  • Khokhlov AR. On the collapse of weakly charged polyelectrolytes. J Phys A: Math Gen. 1980;13:979–987.
  • Kargin VA, Mirlina SYA, Kabanov VA, et al. A study of the structure of isotactic polyacrylic acid and its salts. Polym Sci USSR. 1962;3:34–41.
  • Heitz C, Rawiso M, François J. X-ray scattering study of a poly(methacrylic acid) sample as a function of its neutralization degree. Polymer (Guildf). 1999;40:1637–1650.
  • Kern EE, Anderson DK. The structure and transport properties of poly(methacrylic acid) in aqueous solution. J. Polym Sci Part A: Polym Chem. 1968;6:2765–2772.
  • Koenig JL, Angood AC, Semen J, et al. Laser-excited Raman studies of the conformational transition of syndiotacticpolymethacrylic acid in water. J Am Chem Soc. 1969;91:7250–7254.
  • Lando JB, Koenig JL, Semen J. Conformational studies of poly(methacrylic acid). II. Laser-excited Raman studies of the conformational transition in aqueous solution. J Macromol Sci Phys. 1973;7:319–343.
  • Okamoto H, Wada Y. Viscoelastic study of the conformational transition of poly(methacrylic acid) in dilute aqueous solution. J Polym Sci B Polym Phys. 1974;12:2413–2422.
  • Wang X, Ye X, Zhang G. Investigation of pH-induced conformational change and hydration of poly(methacrylic acid) by analytical ultracentrifugation. Soft Matter. 2015;11:5381–5388.
  • Ju S-P, Lee W-J, Huang C-I, et al.. structure and dynamics of water surrounding the poly(methacrylic acid): A molecular dynamics study. J Chem Phys. 2007;126:224901-224910.
  • Rabiee A. Acrylamide-based anionic polyelectrolytes and their applications: A survey. J Vinyl Addit Technol. 2010;16:111–119.
  • Premachandran RS, Malghan SG. Dispersion characteristics of ceramic powders in the application of cationic and anionic polyelectrolytes. Powder Technol. 1994;79:53–60.
  • Rabiee A, Ershad-Langroudi A, Zeynali ME. A survey on cationic polyelectrolytes and their applications: acrylamide derivatives. Rev Chem Eng. 2015;31:239–261.
  • Wever DAZ, Picchioni F, Broekhuis AA. Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution. Prog Polym Sci. 2011;36:1558–1628.
  • Bolto BA. Soluble polymers in water purification. Prog Polym Sci. 2011;20:987–1041.
  • Bolto B, Gregory J. Organic polyelectrolytes in water treatment. Water Res. 2007;41:2301–2324.
  • Williams PA. Gelling agents. Handbook of industrial water soluble polymers 73–97. Oxford: Blackwell Publishing Ltd; 2007.
  • Wytrwal M, Koczurkiewicz P, Wójcik K, et al. Synthesis of strong polycations with improved biological properties. J Biomed Mater Res A. 2014;102:721–731.
  • Bratskaya S, Avramenko V, Schwarz S, et al. Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives. Colloids Surf A Physicochem Eng. 2006;275:168–176.
  • Samal SK, Dash M, Vlierberghe SV, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012;41:7147–7194.
  • Tabujew I, Peneva K. Functionalization of cationic polymers for drug delivery applications. In: Tang BZ, editor. Cationic polymers in regenerative medicine. Cambridge: The Royal Society of Chemistry; 2014 Nov 14:1–29.
  • Chen X, Wang Y, Pelton R. pH-Dependence of the properties of hydrophobically modified polyvinylamine. Langmuir. 2005;21:11673–11677.
  • Pelton R. Polyvinylamine: A tool for engineering interfaces. Langmuir. 2014;30:15373–15382.
  • Novak BM, Cafmeyer JT. Meta-stable enamines: synthesis of simple enamines via catalytic isomerization of allylic amine substrates and their polymerization behavior. J Am Chem Soc. 2001;123:11083–11084.
  • Pinschmidt RK. Polyvinylamine at last. J Polym Sci A: Polym Chem. 2010;48:2257–2283.
  • Gu L, Zhu S, Hrymak AN. Acidic and basic hydrolysis of poly(N-vinylformamide). J Appl Polym Sci. 2002;86:3412–3419.
  • Kim T-J, Vrålstad H, Sandru M, et al. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci. 2013;428:218–224.
  • Tong Z, Ho WSW. New sterically hindered polyvinylamine membranes for CO2 separation and capture. J Membr Sci. 2017;543:202–211.
  • Feng X, Pelton R, Leduc M, et al. Colloidal complexes from poly(vinyl amine) and Carboxymethyl cellulose mixtures. Langmuir. 2007;23:2970–2976.
  • Feng X, Pelton R, Leduc M. Mechanical properties of polyelectrolyte complex films based on polyvinylamine and Carboxymethyl cellulose. Ind Eng Chem Res. 2006;45:6665–6671.
  • Mokhtari H, Pelton R, Jin L. Polyvinylamine-g-galactose is a route to bioactivated silica surfaces. J Colloid Interf Sci. 2014;413:86–91.
  • Saito T, Isogai A. Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res. 2007;46:773–780.
  • Hong J, Pelton R. The surface tension of aqueous polyvinylamine and copolymers with N-vinylformamide. Colloid Polym Sci. 2002;280:203–205.
  • Mitchell MA, Beihoffer TW, Sultana RS; BASF SE, assignee. Poly (vinylamine)-base super-absorbent gels and method of manufacturing the same. U. S. Patent 6,603,055. Aug 5 2003.
  • Azad MM, Herfert N, Mitchell M, Robinson J; BASF SE, assignee. Crosslinked polyamine coating on super-absorbent hydrogels. U.S. Patent 7,396,584. Jul 8 2008.
  • Andre V, Bertleff W, Borzyk O, Huff J and Noerenberg R.; (BASF SE). Use of alkoxylated polyvinyl amines for the modification of surfaces. U.S. Patent 7,268,199, Sep 11, 2007.
  • Hu Z, Zhang S, Yang J, et al. Some properties of aqueous-solutions of poly(vinylamine chloride). J Appl Polym Sci. 2003;89:3889–3893.
  • Sumaru K, Matsuoka H, Yamaoka H. Exact Evaluation of characteristic protonation of poly(vinylamine) in aqueous solution. J Phys Chem. 1996;100:9000–9005.
  • van Treslong CJB, Staverman AJ. Poly(ethylenimine) II. potentiometric titration behaviour in comparison with other weak polyelectrolytes. Recueil des TravauxChimiques des Pays-Bas. 1974;93:171–178.
  • van Treslong CJB, Morra CFH. Poly(vinylamine). Synthesis and characterization. Rec Trav Chim Pays Bas. 1975;94:101–105.
  • van Treslong CJB. Evaluation of potentiometric data of weak polyelectrolytes taking account of nearest-neighbour interaction. Rec Trav Chim Pays Bas. 1978;97:13–21.
  • van Treslong CJB, Moonen P. Distribution of counter-ions in solutions of weak polyelectrolytes A study to the effects of neighbour interactions between charged sites and the structure of the macromolecule. Rec Trav Chim Pays Bas. 1978;97:22–27.
  • van Treslong Bloys CJ, Jansen BJ. (Vinyl amine)-(vinyl alcohol) copolymers synthesis, characterization and potentiometric behaviour. Eur Polym J. 1983;19:131–134.
  • van Treslong CJB. Interaction between functional groups in low-molecular-weight polyfunctional compounds. Rec Trav Chim Pays Bas. 1978;97:9–13.
  • van den Berg JWA, van Treslong CJB, Polderman A. Polyethyleneimine I: fractionation; mark-houwink relation. Rec Trav Chim Pays Bas. 1973;92:3–10.
  • Lewis EA, Barkley J, St. Pierre T. Calorimetric titration of poly(vinylamine) and poly(iminoethylene). Macromolecules. 1981;14:546–551.
  • Lewis EA, Barkley TJ, Reams RR, et al. Thermodynamics of proton ionization from poly(vinylammonium salts). Macromolecules. 1984;17:2874–2881.
  • Christensen JJ, Izatt RM, Wrathall DP, et al. Thermodynamics of proton ionization in dilute aqueous solution. part XI. pK, ΔH°, and ΔS° values for proton ionization from protonated amines at 25°. J Chem Soc A. 1969: 1212–1223.
  • Lewis EA, Barkley J, St. Pierre T. Calorimetric titration of poly(vinylamine) and poly(iminoethylene). Macromolecules. 1981;14:546–551.
  • Kozhuharov S, Radiom M, Maroni P, et al. Persistence length of poly(vinyl amine): quantitative image analysis versus single molecule force response. Macromolecules. 2018;51:3632–3639.
  • Hugel T, Rief M, Seitz M, et al. Highly stretched single polymers: atomic-force-microscope experiments versus Ab-initio theory. Phys Rev Lett. 2005;94:048301.
  • Kirwan LJ, Papastavrou G, Borkovec M, et al. Imaging the coil-to-globule conformational transition of a weak polyelectrolyte by tuning the polyelectrolyte charge density. Nano Lett. 2004;4:149–152.
  • Martel B, Pollet A, Morcellet M. N-BenzylatedPoly(vinylamine): synthesis, characterization, and catalytic activity in ester cleavage. Macromolecules. 1994;27:5258–5262.
  • Kobayashi S, Suh K-D, Shirokura Y, et al. Viscosity behavior of poly(vinylamine) and swelling-contraction phenomenon of Its Gel. Polymer J. 1989;21:971–976.
  • Kobayashi S, Suh KD, Shirokura Y. Chelating ability of poly(vinylamine): effects of polyamine structure on chelation. Macromolecules. 1989;22:2363–2366.
  • Chang C, Muccio DD, St. Pierre T, et al. A configurational study of poly(vinylamine) by multinuclear nuclear magnetic resonance. Macromolecules. 1986;19:913–916.
  • Rinaldi PL, Yu C, Levy GC. Carbon-13 and nitrogen-15 spin-lattice relaxation studies of poly(vinylamine) and poly(iminoethylene). Macromolecules. 1981;14:551–554.
  • Illergård J, Enarsson L-E, Wågberg L, et al. Interactions of hydrophobically modified polyvinylamines: adsorption behavior at charged surfaces and the formation of polyelectrolyte multilayers with polyacrylic acid. ACS Appl Mater Interf. 2010;2:425–433.
  • Choudhury CK, Roy S. Structural and dynamical properties of polyethylenimine in explicit water at different protonation states: a molecular dynamics study. Soft Matter. 2013;9:2269–2281.
  • Beu TA, Ailenei A-E, Farcaş A. CHARMM force field for protonated polyethyleneimine. J Comput Chem. 2018;39:2564–2575.
  • Ziebarth JD, Wang Y. Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations. Biomacromolecules. 2010;11:29–38.
  • Herlem G, Lakard B. Ab initio study of the electronic and structural properties of the crystalline polyethyleneimine polymer. J Chem Phys. 2004;120:9376–9382.
  • Kondinskaia DA, Kostritskii A, Nesterenko AM, et al. Atomic-Scale molecular dynamics simulations of DNA–polycation complexes: two distinct binding patterns. J Phys Chem B. 2016;120:6546–6554.
  • Romero Nieto D, Lindbråthen A, Hägg M-B. Effect of water interactions on polyvinylamine at different pHs for membrane Gas separation. ACS Omega. 2017;2:8388–8400.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25:1656–1676.
  • Oostenbrink C, Juchli D, van Gunsteren WF. Amine hydration: a united-atom force-field solution. Chem Phys Chem. 2005;6:1800–1804.
  • Pechlaner M, Reif MM, Oostenbrink C. Reparametrisation of united-atom amine solvation in the GROMOS force field. Mol Phys. 2017;115:1144–1154.
  • van Buuren AR, Marrink SJ, Berendsen HJC. A molecular dynamics study of the decane/water interface. J Phys Chem. 1993;97:9206–9212.
  • Ryckaert J-P, Bellemans A. Molecular dynamics of liquid alkanes. Faraday Discuss. 1978;66:95–106.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.
  • Braun E, Moosavi SM, Smit B. Anomalous effects of velocity rescaling algorithms: The flying Ice cube effect revisited. J Chem Theory Comput. 2018;14:5262–5272.
  • Basconi JE, Shirts MR. Effects of temperature control Algorithms on transport properties and kinetics in molecular dynamics simulations. J Chem Theory Comput. 2013;9:2887–2899.
  • Hockney RW, Eastwood JW. Computer simulation using particles. Boca Raton: CRC Press; 1988.
  • Inc AS. Discovery studio modeling environment. San Diego. 2007.
  • Suter UW, Flory PJ. Conformational energy and configurational statistics of polypropylene. Macromolecules. 1975;8:765–776.
  • Rapold RF, Suter UW. Conformational characteristics of polystyrene. Macromol Theory Simul. 1994;3:1–17.
  • Suter UW. Epimerization of vinyl polymers to stereochemical equilibrium. 1. Theory. Macromolecules. 1981;14:523–528.
  • Hess B. Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys. 2001;116:209–217.
  • Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature. 1996;379:55–57.
  • Luzar A. Resolving the hydrogen bond dynamics conundrum. J Chem Phys. 2000;113:10663–10675.
  • van der Spoel D, Berendsen HJ. Molecular dynamics simulations of Leu-enkephalin in water and DMSO. Biophys J. 1997;72:2032–2041.
  • Berendsen HJ, Postma JP, van Gunsteren WF, et al. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular forces proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry. Jerusalem, Israel. Dordrecht: Springer; 1981 April 13–16. p. 331–342.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Søndergaard CR, Olsson MHM, Rostkowski M, et al. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values in empirical pKa predictions. J Chem Theory Comput. 2011;7:525–537.
  • Olsson MHM, Søndergaard CR, Rostkowski M, et al. PROPKA3: Consistent Treatment of internal and surface residues. J Chem Theory Comput. 2011;7:2284–2295.
  • Manning GS, Ray J. Counterion condensation revisited. J Biomol Struct Dyn. 1998;16:461–476.
  • Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103:4570–4577.
  • Van der Maarel JRC, Lankhorst D, De Bleijser J, et al. Water dynamics in polyelectrolyte solutions from deuterium and oxygen-17 nuclear magnetic relaxation. Macromolecules. 1987;20:2390–2397.
  • Hinderberger D, Spiess HW, Jeschke G. Probing How Counterion structure and dynamics determine polyelectrolyte solutions using EPR spectroscopy. Appl Magn Reson. 2009;37:657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.