712
Views
2
CrossRef citations to date
0
Altmetric
Articles

Molecular insight into the structure and dynamics of LiTf2N/deep eutectic solvent: an electrolyte for Li-ion batteries

ORCID Icon, &
Pages 1477-1492 | Received 25 May 2021, Accepted 05 Sep 2021, Published online: 04 Oct 2021

REFERENCES

  • Chen S, Zhao Y, Sun B, et al. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries and oxygen evolution reactions. ACS Appl Mater Interf. 2015;7(5):3306–3313.
  • Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater. 2013;25(35):4932–4937.
  • Li Q, Wu Y, Wang Z, et al. Carbon nanotubes coupled with metal ion diffusion layers stabilize oxide conversion reactions in high-voltage lithium-ion batteries. ACS Appl Mater Interf. 2020;12(14):16276–16285.
  • Haregewoin AM, Wotango AS, Hwang BJ. Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci. 2016;9:1955–1988.
  • Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 2014;136(13):5039–5046.
  • Zhang SS. A review on electrolyte additives for lithium-ion batteries. J Power Sources. 2006;162(2):1379-1394. Special issue including selected papers from the International Power Sources Symposium 2005 together with regular papers.
  • Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev. 2016;116(1):140–162.
  • Xue Z, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A. 2015;3:19218–19253.
  • Ishikawa M, Sugimoto T, Kikuta M, et al. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources. 2006;162(1):658–662.
  • Chakrapani V, Rusli F, Filler MA, et al. Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery. J Phys Chem C. 2011;115(44):22048–22053.
  • Abbott AP, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142–9147.
  • Nkuku CA, LeSuer RJ. Electrochemistry in deep eutectic solvents. J Phys Chem B. 2007;111(46):13271–13277.
  • D’Agostino C, Harris RC, Abbott AP, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1 h pulsed field gradient nmr spectroscopy. Phys Chem Chem Phys. 2011;13:21383–21391.
  • Florindo C, Oliveira FS, Rebelo LPN, et al. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain Chem Eng. 2014;2(10):2416–2425.
  • Jhong Huei-Ru, Wong DS-H, Wan C-C, et al. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun. 2009;11(1):209–211.
  • Abbott AP, Capper G, Davies DL, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data. 2006;51(4):1280–1282.
  • Cen P, Spahiu K, Tyumentsev MS, et al. Metal extraction from a deep eutectic solvent, an insight into activities. Phys Chem Chem Phys. 2020;22:11012–11024.
  • Söldner A, Zach J, König B. Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash. Green Chem. 2019;21:321–328.
  • Gouveia ASL, Oliveira FS, Kurnia KA, et al. Deep eutectic solvents as azeotrope breakers: liquid-liquid extraction and cosmo-rs prediction. ACS Sustain Chem Eng. 2016;4(10):5640–5650.
  • Pena-Pereira F, Namiésnik J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem. 2014;7(7):1784–1800.
  • Mirza NR, Nicholas NJ, Wu Y, et al. Experiments and thermodynamic modeling of the solubility of carbon dioxide in three different deep eutectic solvents (dess). J Chem Eng Data. 2015;60(11):3246–3252.
  • Garćıa G, Aparicio S, Ullah R, et al. Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels. 2015;29(4):2616–2644.
  • Nam MW, Zhao J, Lee MS, et al. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from flos sophorae. Green Chem. 2015;17:1718–1727.
  • Boisset A, Jacquemin J, Anouti M. Physical properties of a new deep eutectic solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and n-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim. Acta. 2013;102:120–126.
  • Boisset A, Menne S, Jacquemin J, et al. Deep eutectic solvents based on n-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys. 2013;15:20054–20063.
  • Millia L, Dall'Asta V, Ferrara C, et al. Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics. 2018;323:44–48.
  • Ogawa H, Mori H. Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study. Phys Chem Chem Phys. 2020;22:8853–8863.
  • Dinh TTA, Huynh TTK, Le LTM, et al. Deep eutectic solvent based on lithium bis[(trifluoromethyl)sulfonyl] imide (litfsi) and 2,2,2-trifluoroacetamide (tfa) as a promising electrolyte for a high voltage lithium-ion battery with a LiMn2O4 cathode. ACS Omega. 2020;5(37):23843–23853.
  • Ray P, Vogl T, Balducci A, et al. Structural investigations on lithium-doped protic and aprotic ionic liquids. J Phys Chem B. 2017;121(20):5279–5292.
  • Ray P, Balducci A, Kirchner B. Molecular dynamics simulations of lithium-doped ionic-liquid electrolytes. J Phys Chem B. 2018;122(46):10535–10547.
  • Wŕobel P, Kubisiak P, Eilmes A. Interactions in sodium bis(fluorosulfonyl)imide/1-ethyl-3- methylimidazolium bis(fluorosulfonyl)imide electrolytes for na-ion batteries: Insights from molecular dynamics simulations. J Phys Chem C. 2019;123(24):14885–14894.
  • Nasrabadi AT, Ganesan V. Structure and transport properties of lithium-doped aprotic and protic ionic liquid electrolytes: Insights from molecular dynamics simulations. J Phys Chem B. 2019;123(26):5588–5600.
  • Lim J, Lee KK, Liang C, et al. Two-dimensional infrared spectroscopy and molecular dynamics simulation studies of nonaqueous lithium ion battery electrolytes. J Phys Chem B. 2019;123(31):6651–6663.
  • Zhang Y, Lewis NHC, Mars J, et al. Water-in-salt litfsi aqueous electrolytes. 1. liquid structure from combined molecular dynamics simulation and experimental studies. J Phys Chem B. 2021;125(17):4501–4513.
  • Ravikumar B, Mynam M, Rai B. Effect of salt concentration on properties of lithium ion battery electrolytes: a molecular dynamics study. J Phys Chem C. 2018;122(15):8173–8181.
  • Kubisiak P, Wróbel P, Eilmes A. Molecular dynamics investigation of correlations in ion transport in metfsi/emim{tfsi (me = li, na) electrolytes. J Phys Chem B. 2020;124(2):413–421.
  • Kumar G, Kartha TR, Mallik BS. Novelty of lithium salt solution in sulfone and dimethyl carbonate-based electrolytes for lithium-ion batteries: a classical molecular dynamics simulation study of optimal ion diffusion. J Phys Chem C. 2018;122(46):26315–26325.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–11236.
  • Doherty B, Acevedo O. Opls force field for choline chloride-based deep eutectic solvents. J Phys Chem B. 2018;122(43):9982–9993.
  • Perkins SL, Painter P, Colina CM. Experimental and computational studies of choline chloridebased deep eutectic solvents. J Chem Eng Data. 2014;59(11):3652–3662.
  • Vicent-Luna JM, Idígoras J, Hamad S, et al. Ion transport in electrolytes for dye-sensitized solar cells: a combined experimental and theoretical study. J Phys Chem C. 2014;118(49):28448–28455.
  • Ȧqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem. 1990;94(21):8021–8024.
  • Abraham M.J., Murtola T., Schulz R. et al.. . Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
  • Martínez L, Andrade R, Birgin EG, et al. Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157–2164.
  • Petersen HG. Accuracy and efficiency of the particle mesh ewald method. J Chem Phys. 1995;103(9):3668–3679.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.
  • Humphrey W, Dalke A, Schulten K. VMD - visual molecular dynamics. J Mol Graph. 1996;14:33–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.