87
Views
0
CrossRef citations to date
0
Altmetric
Articles

Could the spanning of NAM-AD subsites by poly (ADP ribose) polymerase inhibitors potentiate their selective inhibitory activity in breast cancer treatment? Insight from biophysical computations

, & ORCID Icon
Pages 131-139 | Received 18 Aug 2021, Accepted 12 Oct 2021, Published online: 31 Oct 2021

References

  • Gupte R, Liu Z, Kraus WL. Parps and adp-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017;31:101–126.
  • Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res Fundam Mol Mech Mutagen. 2001;477:97–110.
  • Ricoul M, Tartier L, Niedergang C, et al. Josiane Me  nissier de Murcia. 2003;22:2255–2263.
  • Schreiber V, Amé JC, Dollé P, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277:23028–23036.
  • Amé JC, Rolli V, Schreiber V, et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem. 1999;274:17860–17868.
  • Amé JC, Spenlehauer C, De Murcia G. The PARP superfamily. BioEssays. 2004;26:882–893.
  • Tomassi S, Pfahler J, Mautone N, et al. From PARP1 to TNKS2 inhibition: a structure-based approach. ACS Med Chem Lett. 2020;11:862–868.
  • Langelier M, Adp-ribosyl P, Planck JL, et al. Structural basis for DNA. Structure. 2012;728:728–733.
  • Dawicki-McKenna JM, Langelier MF, DeNizio JE, et al. PARP-1 Activation requires local unfolding of an autoinhibitory domain. Mol Cell. 2015;60:755–768.
  • Velagapudi UK, Langelier M, Delgado-martin C, et al. Design and synthesis of poly(ADP-ribose) polymerase inhibitors: impact of adenosine pocket-binding motif appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on potency and selectivity. J Med Chem. 2019;62:5330–5357.
  • Langelier MF, Zandarashvili L, Aguiar PM, et al. NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nat Commun. 2018;9. DOI: https://doi.org/10.1038/s41467-018-03234-8
  • Ossovskaya V, Koo IC, Kaldjian EP, et al. Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes and Cancer. 2010;1:812–821.
  • Brustmann H. Poly(ADP-ribose) polymerase (PARP) and DNA-fragmentation factor (DFF45): expression and correlation in normal, hyperplastic and neoplastic endometrial tissues. Pathol Res Pract. 2007;203:65–72.
  • Matsuura S, Egi Y, Yuki S, et al. MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, ameliorates ischemic brain damage in a non-human primate model. Brain Res. 2011;1410:122–131.
  • Giansanti V, Donà F, Tillhon M, et al. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol. 2010;80:1869–1877.
  • Dantzer F, Giraud-Panis M-J, Jaco I, et al. Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol. 2004;24:1595–1607.
  • Dantzer F, Mark M, Quenet D, et al. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci USA. 2006;103:14854–14859.
  • Yélamos J, Schreiber V, Dantzer F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med. 2008;14:169–178.
  • Yélamos J, Monreal Y, Saenz L, et al. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J. 2006;25:4350–4360.
  • Troiani S, Lupi R, Perego R, et al. Identification of candidate substrates for poly(ADP-ribose) polymerase-2 (PARP2) in the absence of DNA damage using high-density protein microarrays. FEBS J. 2011;278:3676–3687.
  • Geng B, Cai Y, Gao S, et al. PARP-2 knockdown protects cardiomyocytes from hypertrophy via activation of SIRT1. Biochem Biophys Res Commun. 2013;430:944–950.
  • Kofler J, Otsuka T, Zhang Z, et al. Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab. 2006;26:135–141.
  • Ishida J, Yamamoto H, Kido Y, et al. Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorganic Med Chem. 2006;14:1378–1390.
  • Iwashita A, Hattori K, Yamamoto H, et al. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett. 2005;579:1389–1393.
  • Moroni F, Formentini L, Gerace E, et al. Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage. Br J Pharmacol. 2009;157:854–862.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma. 2016;2016:5.6.1–5.6.37.
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4; DOI: https://doi.org/10.1186/1758-2946-4-17
  • Allouche A. Software news and updates gabedit — A graphical user interface for computational chemistry softwares. J Comput Chem. 2012;32:174–182.
  • Case DA, Walker RC, Cheatham TE, et al. Amber 18. Univ. California. San Fr. 2018.
  • Maier JA, Martinez C, Kasavajhala K, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696–3713.
  • Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–1688.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–3095.
  • Seifert E. Originpro 9.1: scientific data analysis and graphing software - software review. J Chem Inf Model. 2014;54:1552.
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–897.
  • Hou T, Wang J, Li Y, et al. Assessing the performance of the MM_PBSA and MM_GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69–82.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–461.
  • David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol. 2014;1084:193–226.
  • Bös F, Pleiss J. Multiple molecular dynamics simulations of TEM β-lactamase: dynamics and water binding of the Ω-loop. Biophys J. 2009;97:2550–2558.
  • Damale MG, Patil R, Ansari SA, et al. Identification of dual site inhibitors of tankyrase through virtual screening of protein-ligand interaction fingerprint (PLIF) – derived pharmacophore models, molecular dynamics, and ADMET studies. 2019, 1.
  • Kirubakaran P, Arunkumar P, Premkumar K, et al. Sighting of tankyrase inhibitors by structure- and ligand-based screening and in vitro approach. Mol Biosyst. 2014;10:2699–2712.
  • Halder AK, Saha A, Das Saha K, et al. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation. J Biomol Struct Dyn. 2015;33:1756–1779.
  • Nilov D, Maluchenko N, Kurgina T, et al. Molecular mechanisms of PARP-1 inhibitor 7-methylguanine. Int J Mol Sci. 2020;21:1–11.
  • Salmas RE, Unlu A, Yurtsever M, et al. In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors. J Enzyme Inhib Med Chem. 2016;31:112–120.
  • Nilov DK, Pushkarev SV, Gushchina IV. Modeling of the enzyme – substrate complexes of human poly (ADP ribose) polymerase 1. Biochemistry (Mosc). 2020;85:99–107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.