346
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effects of orientation and twin boundary spacing on the mechanical behaviour of γ-TiAl alloy

, , &
Pages 231-246 | Received 16 Aug 2021, Accepted 10 Nov 2021, Published online: 02 Dec 2021

References

  • Kumar VA, Gupta RK, Prasad M, et al. Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review. J. Mater. Res. 2021;36:689–716.
  • Bewlay BP, Weimer M, Kelly T, et al. The science, technology, and implementation of TiAl alloys in commercial aircraft engines. Mater. Res. Soc. Symp. Proc. 2013;1516:49–58.
  • Mogale NF, Matizamhuka WR. Spark plasma sintering of titanium aluminides: a progress review on processing, structure-property relations, alloy development and challenges. Metals (Basel). 2020;10(1080).
  • Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013;15(4):191–215.
  • Wang Y, Yuan H, Ding H, et al. Effects of lamellar orientation on the fracture toughness of TiAl PST crystals. Mat. Sci. Eng. A. 2019;752:199–205.
  • Inui H, Matsumuro M, Wu DH, et al. Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti-56 at.% Al). Philos. Mag. A. 1997;75(2):395–423.
  • Umakoshi Y, Nakano T, Yamane T. The effect of orientation and lamellar structure on the plastic behavior of TiAl crystals. Mat. Sci. Eng. A. 1992;152(1-2):81–88.
  • Kanani M, Hartmaier A, Janisch R. Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys. Acta Mater. 2016;106:208–218.
  • Wang H. Atomistic simulations of dipole transformations and twinning behavior in some FCC metals and intermetallic TiAl[D].2009. (In Chinese).
  • Chowdhury H, Naumenko K, Altenbach H, et al. Rate dependent tension-compression-asymmetry of Ti-61.8at.%Al alloy with long period superstructures at 1050 °C. Mat. Sci. Eng. A. 2017;700:503–511.
  • Tian Y, Ding J, Huang X, et al. Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: twin boundary spacing and temperature effect. Comp. Mater. Sci. 2020;171:109218.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352.
  • Hou XW, Guo YF, Zhou L, et al. Plastic deformation mechanisms of nanotwinned Mg with different twin boundary orientations: molecular dynamics simulations. Mol. Simulat. 2020;1:1–9.
  • Hooshmand MS, Zhang R, Chong Y, et al. Twin-boundary structural phase transitions in elemental titanium. Asta, arXiv preprint arXiv. 2021.
  • Swygenhoven HV, Derlet PM, Frøseth AG. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 2004;3(6):399–403.
  • Zhang Z, Fu Q, Wang J, et al. Hardening Ni3Al via complex stacking faults and twinning boundary. Comp. Mater. Sci. 2020;188:110201.
  • Sinha T, Kulkarni Y. Anomalous deformation twinning in fcc metals at high temperatures. Appl. Phys. 2011;109(11):114315.
  • Li L, Ghoniem NM. Twin-size effects on the deformation of nanotwinned copper. Phys. Rev. B. 2009;79(7):075444.
  • Ma SL, Tang XZ, Zu Q, et al. Unusual shear induced unconventional {1011} twinning in Mg. scripta. Mater. 2020;180:40–44.
  • Cao H, Rui ZY, Chen WK, et al. Deformation mechanisms in nanotwinned γ-TiAl by molecular dynamics simulation. Mol. Simulat. 2018;44(18):1489–1500.
  • Chen Y, Pope DP, Vitek V. Dislocation/twin/interface interactions during deformation of PST TiAl single crystals, an AFM study. MRS Online Proceeding Library Archive. 2002;753:456–457.
  • Yoo MH, Fu CL. Physical constants, deformation twinning, and microcracking of titanium aluminides. Metall. Mater. Trans. A. 1998;29(1):49–63.
  • Li P, Yang YQ, Xia Z, et al. Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy. Rsc. Adv. 2017;7(76):48315–48323.
  • Zhao WJ, Xu DS, Zhao JW, et al. Molecular dynamics simulation of fracture behaviors of <110> tilt grain boundaries in γ-TiAl. Nonferr. Metal. Soc. 2014;24(11):3645–3651.
  • Xu D, Wang H, Yang R, et al. Molecular dynamics investigation of deformation twinning in γ-TiAl sheared along the pseudo-twinning direction. Acta Mater. 2008;56(5):1065–1074.
  • Zope RR, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B. 2003;68:024102.
  • Wu HA, Soh AK, Wang XX, et al. Strength and fracture of single crystal metal nanowire. Key Eng. Mater.. 2004;261-263:33–38.
  • Koh SJA. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnology. 2006;17(14):3451–3467.
  • Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B. Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires. Physical Review B. 2007;76(13):134117.
  • Koh SJA, Lee HP, Lu C, et al. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects. Physical Review B. 2005;72(8):085414.
  • Min K, Aluru NR. Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 2011;98(1):013113.
  • Hadizadeh KA, Saeivar IE, Raeisi M, et al. Mechanical properties of hydrogen functionalized graphene under shear deformation: A molecular dynamics study. Solid. State. Commun. 2014;177:98–102.
  • Popova M, Shen YL, Khraishi TA. Atomistic simulation of dislocation interactions in a model crystal subjected to shear. Mol. Simulat. 2005;31(14-15):1043–1049.
  • Zhang H, Fu Y, Zheng Y, et al. Molecular dynamics investigation of plastic deformation mechanism in bulk nanotwinned copper with embedded cracks. Phys. Lett. A. 2014;378(9):736–740.
  • Kulkarni Y, Asaro RJ, Farkas D. Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scripta. Mater. 2009;60(7):532–535.
  • Yang Z, Zheng L, Yue Y, et al. Effects of twin orientation and spacing on the mechanical properties of Cu nanowires. Sci Rep. 2017;7(1):10056.
  • Chen Y, Cao Y, Qi Z, et al. Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization. J Mater. Sci. Technol. 2021;93:53–59.
  • Cahn J W, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta Mater. 2006;54(19):4953–4975.
  • Yan ST, Qi ZX, Chen Y, et al. Interlamellar boundaries govern cracking. Acta Mate. 2021;215(11):117091.
  • Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. P. Natl. Acad. Sci. USA. 2007;104(9):3031–3036.
  • Liu WS, Gu SQ. Structural characteristics and physical constants of TiAl. Materials Review. 2000;14(9):19–21. (In Chinese).
  • Schafrik RE. Dynamic elastic moduli of the titanium aluminides. Metall. Trans. A. 1977;8(6):1003–1006.
  • Tanaka K. Single-crystal elastic constants of gamma-TiAl. Phil. Mag. Lett. 1996;73(2):71–78.
  • He Y, Schwarz RB, Migliori A, et al. Elastic constants of single crystal γ-TiAl. J. Mater. Research. 1995;10(5):1187–1195.
  • Mecking H, Hartig C, Kocks UF. Deformation modes in γ-TiAl as derived from the single crystal yield surface. Acta Mater. 1996;44(4):1309–1321.
  • Lebensohn R, Uhlenhut H, Hartig C, et al. Plastic flow of γ -TiAl-based polysynthetically twinned crystals: micromechanical modeling and experimental validation. Acta Mater. 1999;46(13):4701–4709.
  • Hu GX, Cai X. Fundamentals of material science. Shanghai: Shanghai Jiao Tong University Press. 2000.
  • Weinberger C R, Cai W. Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations. J. Mech. Phys. Solids. 2010;58(7):1011–1025.
  • Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–880.
  • Palomares-García AJ, Pérez-Prado MT, Molina-Aldareguia JM. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater. 2017;123:102–114.
  • Paxton AT. Atomistic studies of ⟨101] screw dislocation core structures and glide in γ-TiAl. Philos. Mag. 2009;89(21):1731–1750.
  • Mahapatra R, Girshick A, Pope DP, et al. Deformation mechanisms of near-stoichiometric single phase TiAl single crystals: A combined experimental and atomistic modeling study. Scripta Metallurgica et Materialia. 1995;33(12):1921–1927.
  • Chen D, Kulkarni Y. Entropic interaction between fluctuating twin boundaries. J. Mech. Phys. Solids. 2015;84:59–71.
  • Ivanov VA, Mishin Y. Dynamics of grain boundary motion coupled to shear deformation: An analytical model and its verification by molecular dynamics. Phys. Rev. B. 2008;78(6):064106.
  • Xu S, Chavoshi SZ, Su Y. Deformation mechanisms in nanotwinned tungsten nanopillars: effects of coherent twin boundary spacing. Physica Status Solidi (RRL)–Rapid Research Letters. 2018;12(3):1700399.
  • Cheng G, Yin S, Chang TH, et al. Anomalous tensile detwinning in twinned nanowires. Phys. Rev. Lett. 2017;119(25):256101.
  • Chen G, Peng Y, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater. 2016;15:876–881.
  • Zeng Y, Li X. Atomistic simulations of high-temperature creep in nanotwinned TiAl alloys[J]. Extreme Mech. Lett. 2021;101253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.