166
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigations of thermal and mechanical properties of graphene-silver nanocomposites: a molecular dynamics study

, , &
Pages 264-272 | Received 14 Jul 2021, Accepted 14 Nov 2021, Published online: 01 Dec 2021

References

  • Shao Y, Wang J, Wu H, et al. Graphene-based electrochemical sensors and biosensors: a review. Electroanalysis: Int J Devoted Fundam Pract Aspects Electroanalysis. 2010;22(10):1027–1036.
  • Nair RR, Blake P, Grigorenko AN, et al. The fine structure constant defines the visual transparency of graphene. Science. 2008;320(5881):1308–1308.
  • Jauregui LA, Yue Y, Sidorov AN, et al. Thermal transport in graphene nanostructures: experiments and simulations. ECS Trans. 2010;28(5):73.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Cheung KC, Gershenfeld N. Reversibly assembled cellular composite materials. Science. 2013;341(6151):1219–1221.
  • Mei L, Li Y, Wang R, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites with high interfacial strength. Polym Polym Compos. 2011;19(2-3):107–112.
  • Yazdandoost F, Boroujeni AY, Mirzaeifar R. Nanocrystalline nickel-graphene nanoplatelets composite: superior mechanical properties and mechanics of properties enhancement at the atomistic level. Phys Rev Mater. 2017;1(7):076001R.
  • Kim Y, Lee J, Yeom MS, et al. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun. 2013;4(1):1–7.
  • Peng W, Sun K. Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene composites. Mech Mater. 2020;141:103270.
  • Agrawal A, Mirzaeifar R. Graphene-Nickel interaction in layered metal-matrix composites. Surf Sci. 2019;688:1–6.
  • Zhang Y, Sanvito S. Interface engineering of graphene nanosheet reinforced ZrB 2 composites by tuning surface contacts. Phys Rev Mater. 2019;3(7):073604.
  • Kalcher C, Brink T, Rohrer J, et al. Elastostatic loading of metallic glass-crystal nanocomposites: relationship of creep rate and interface energy. Phys Rev Mater. 2019;3(9):093605.
  • Mohan VB, Lau KT, Hui D, et al. Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B: Eng. 2018;142:200–220.
  • Salam N, Sinha A, Roy AS, et al. Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles in water. RSC Adv. 2014;4(20):10001–10012.
  • Bhunia SK, Jana NR. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces. 2014;6(22):20085–20092.
  • Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater. 2012;66(8):594–597.
  • Bartolucci SF, Paras J, Rafiee MA, et al. Graphene–aluminum nanocomposites. Mater Sci Eng: A. 2011;528(27):7933–7937.
  • Koltsova TS, Nasibulina LI, Anoshkin IV, et al. New hybrid copper composite materials based on carbon nanostructures. J Mater Sci Eng B. 2012;2(4):240–246.
  • Chen LY, Konishi H, Fehrenbacher A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. ScriptaMaterialia. 2012;67(1):29–32.
  • Kumar S, Das SK, Pattanayek SK. Evolution of nanostructure and mechanical properties of silver nano-particle in the confined region between graphene sheets: an atomistic investigation. Comput Mater Sci. 2018;152:393–407.
  • Kumar S. Spreading and orientation of silver nano-drops over a flat graphene substrate: an atomistic investigation. Carbon N Y. 2018;138:26–41.
  • Li C, Wang X, Chen F, et al. The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials. 2013;34(15):3882–3890.
  • Hull D, Bacon DJ. Introduction to dislocations (Vol. 37). Elsevier; 2011.
  • Duan K, Zhu F, Tang K, et al. Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput Mater Sci. 2016;117:294–299.
  • He Y, Huang F, Li H, et al. Tensile mechanical properties of nano-layered copper/graphene composite. Phys E: Low Dimension Syst Nanostruct. 2017;87:233–236.
  • Rezaei R. Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites. Comput Mater Sci. 2018;151:181–188.
  • Zhang S, Tang Y, Vlahovic B. A review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett. 2016;11(1):1–8.
  • Siddiqi KS, Husen A, Rao RA. A review on biosynthesis of silver nanoparticles properties. J Nanobiotechnology. 2018;16(1):1–28.
  • Frantz DB, Plimpton SJ, Shephard MS. Software components for parallel multiscale simulation: an example with LAMMPS. Eng Comput. 2010;26(2):205–211.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38.
  • Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42(15):9458.
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112(14):6472–6486.
  • Cao G. Atomistic studies of mechanical properties of graphene. Polymers (Basel). 2014;6(9):2404–2432.
  • Barbarino G, Melis C, Colombo L. Effect of hydrogenation on graphene thermal transport. Carbon N Y. 2014;80:167–173.
  • Jiang Q, Zhang S, Zhao M. Size-dependent melting point of noble metals. Mater Chem Phys. 2003;82(1):225–227.
  • Warner JH, Margine ER, Mukai M, et al. Dislocation-driven deformations in graphene. Science. 2012;337(6091):209–212.
  • Shanyi DU. Advanced composite materials and aerospace engineering [J]. Acta Mater Compos Sin. 2007;1:000.
  • Wang J, Zhou Q, Shao S, et al. Strength and plasticity of nanolaminated materials. Mater Res Lett. 2017;5(1):1–19.
  • Charleston J, Agrawal A, Mirzaeifar R. Effect of interface configuration on the mechanical properties and dislocation mechanisms in metal graphene composites. Comput Mater Sci. 2020;178(109621):178–187.
  • Carpio A, Bonilla LL, de Juan F, et al. Dislocations in graphene. New J Phys. 2008;10(5):053021.
  • Fonseca AF, Liang T, Zhang D, et al. Graphene–titanium interfaces from molecular dynamics simulations. ACS Appl Mater Interfaces. 2017;9(38):33288–33297.
  • Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites–a review. Mater Sci Technol. 2016;32(9):930–953.
  • Shuang F, Aifantis KE. Relating the strength of graphene/metal composites to the graphene orientation and position. Scr Mater. 2020;181:70–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.