114
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis, structural, spectroscopic and docking studies on (E)-1-Ferrocenyl-3-phenyl­propen-1-one by the density functional theory

ORCID Icon, , , , , , & show all
Pages 387-402 | Received 01 Aug 2021, Accepted 04 Dec 2021, Published online: 24 Dec 2021

References

  • Su C, Wang L, Xu L, et al. Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochim Acta. 2013;104:302–307.
  • Muthukkumar M, Kamal C, Venkatesh G, et al. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes. J Mol Struct. 2017;1147:502–514.
  • Aravindan P, Sivaraj K, Kamal C, et al. Synthesis, molecular structure, spectral characterization, molecular docking and biological activities of (E)-N-(2-methoxy benzylidene) anthracene-2-amine and Co(II), Cu(II) and Zn(II) complexes. J Mol Struct. 2021;1229:129488–129496.
  • Sakthivel RV, Sankudevan P, Vennila P, et al. Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J Mol Struct. 2021;1233:130097–130106.
  • Togni A, Hayashi T, eds. Ferrocenes: homogenous catalysts, organic synthesis, material science. Weinheim: VCH; 1995.
  • Cullen WR, Woollins JD. Ferrocene-containing metal complexes coordination. Chem Rev. 1981;39:1–30.
  • Barlow S, Hare DO. Metal−metal interactions in linked metallocenes. Chem Rev. 1997;97:637–670.
  • Biot C, Glorian G, Maciejewski LA, et al. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene−chloroquine analogue. J Med Chem. 1997;40:3715–3718.
  • Kazemizadeha AR, Shajari N, Shapouri R, et al. One-pot, four-component synthesis of 1,3,4-oxadiazole derivatives containing a ferrocene unit and their antimicrobial activity. Appl Organomet Chem. 2016;30:148–158.
  • Dou YY, Xie YF, Tang LF. Synthesis, electrochemical properties and fungicidal activity of 1,1′-bis(aroyl)ferrocenes and their derivatives. Appl Organomet Chem. 2008;22:25–36.
  • Kumar K, Pradines B, Madamet M, et al. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: synthesis and in vitro antimalarial evaluation. Eur J Med Chem. 2014;87:801–804.
  • Hafez TS, Osman SA, Yosef HAA, et al. Synthesis, structural elucidation and in vitro antitumor activities of some pyrazolopyrimidines and Schiff bases derived from 5-amino-3-(arylamino)-1H-pyrazole-4-carboxamides. Sci Pharm. 2013;81:3390357.
  • Hussain RA, Badshash A, Sohail M, et al. Synthesis, chemical characterization, DNA interaction and antioxidant studies of ortho, meta and para fluoro substituted ferrocene incorporated selenoureas. Inorganica Chim Acta. 2013;402:133–139.
  • Hassan AS, Hafez TS, Osman SA, et al. Synthesis and in vitro cytotoxic activity of novel pyrazolo[1,5-a]pyrimidines and related Schiff bases. Turk J Chem. 2015;39:1102–1113.
  • IWakil M, Ndahi NP, Abubakar MB, et al. Synthesis, characterization, and antimicrobial studies of propionaldehyde Schiff base metal (II) complexes. Chem Res J. 2017;2:39–46.
  • El-Tabl AS, Shakdofa MME, El-Seidy AMA, et al. Synthesis, characterization and antifungal activity of metal complexes of 2-(5-((2-chlorophenyl)diazenyl)-2-hydroxybenzylidene) hydrazinecarbothioamide. Phosph Sulf Sil Relat Elem. 2012;187:1312–1323.
  • Osman SA, Mousa HA, Yosef HAA, et al. Synthesis, characterization and cytotoxicity of mixed ligand Mn(II), Co(II) and Ni(II) complexes. J Serb Chem Soc. 2014;79:953–964.
  • Rubino S, Pibiri I, Costantino C, et al. Synthesis of platinum complexes with 2-(5-perfluoroalkyl-1,2,4-oxadiazol-3yl)-pyridine and 2-(3-perfluoroalkyl1-methyl-1,2,4-triazole-5yl)-pyridine ligands and their in vitro antitumor activity. J Inorg Biochem. 2016;155:92–103.
  • Abou-Melha K, Refat MS, Sadik A. A series of taurocholic acid complexes, spectral, kinetic, molecular modeling, and antiviral activity studies. Synth React Inorg Metal Org Chem. 2015;45:884–895.
  • Kokare DG, Kamat V, Naik K, et al. Evaluation of DNA cleavage, antimicrobial and anti-tubercular activities of potentially active transition metal complexes derived from 2,6-di(benzofuran-2-carbohydrazono)-4-methylphenol. J Mol Struct. 2017;1127:289–295.
  • Hubin TJ, Amoyaw PNA, Roewe KD, et al. Synthesis and antimalarial activity of metal complexes of crossbridged tetraazamacrocyclic ligands. Bioorg Med Chem. 2014;22:3239–3244.
  • Abdel-Monem YK, Abou El-Enein SA, El-Sheikh-Amer MM. Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1Hpyrazolo[3,4-b]pyridin-1-yl)aceto-hydrazide: synthesis, characterization, modelling and antioxidant activity. J Mol Struct. 2017;1127:386–396.
  • Hoonur RS, Patil BR, Badiger DS, et al. Synthesis, characterization, antiinflammatory and analgesic activity of transitionmetal complexes of 3-[1-(2-hydroxyphenyl)ethylideamino]-2-phenyl-3,4-dihydroquinazolin4(3H)-one. Appl Organomet Chem. 2011;25:476–489.
  • Damljanović I, Čolović M, Vukićević M, et al. Synthesis, spectral characterization and electrochemical properties of 1H-3-(o-, m- and p-ferrocenylphenyl)-1-phenylpyrazole-4-carboxaldehydes. J Organomet Chem. 2009;694:1575–1580.
  • Damljanović I, Vukićević M, Radulović N, et al. Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg Med Chem Lett. 2009;19:1093–1096.
  • Ratković Z, Juranić ZD, Stanojković T, et al. Synthesis, characterization, electrochemical studies and antitumor activity of some new chalcone analogues containing ferrocenyl pyrazole moiety. Bioorg Chem. 2010;38:26–32.
  • Ben Issa T, Sagaama A, Issaoui N. Computational study of 3- thiophene acetic acid: molecular docking, electronic and intermolecular interactions investigations. Comput Biol Chem. 2020;86:107268–107280.
  • Sagaama A, Noureddine O, Brandán SA, et al. Molecular docking studies, structural and spectroscopic properties of monomeric and dimeric species of benzofuran-carboxylic acids derivatives: DFT calculations and biological activities. Comput Biol Chem. 2020;202(87):107311.
  • Romani D, Noureddine O, Issaoui N, et al. Properties and reactivities of niclosamide in different media, a potential antiviral to treatment of COVID-19 by using DFT calculations and molecular docking biointerface. Res Appl Chem. 2020;10(6):7295–7328.
  • Akman F, Issaoui N, Kazachenko AS. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O) n) (n = 1, … , 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Docking. 2020;26(6):61–72.
  • Sagaama A, Issaoui N. Design, molecular docking analysis of an anti-inflammatory drug, computational analysis and intermolecular interactions energy studies of 1-benzothiophene-2-carboxylic acid. Comput Biol Chem. 2020;88:107348–107362.
  • Handy NC, Maslen PE, Amos RD, et al. The harmonic frequencies of benzene. Chem Phys Lett. 1992;197:506–515.
  • Stephens PJ, Derlin FJ, Charalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem A. 1994;98:11623–11627.
  • Lee SY, Boo BH. Molecular structure and vibrational spectra of 9-fluorenone, density functional theory studies. Bull Korean Chem Soc. 1996;17:760–764.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision C.02. Wallingford (CT): Gaussian Inc; 2010.
  • Jamroz MH. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta Part A. 2013;114:220–230.
  • Scott AP, Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem. 1996;100:16502–16513.
  • Arul Dhas D, Hubert Joe I, Roy SDD, et al. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides. Spectrochim Acta Part A. 2013;108:89–99.
  • Denningten R, Keith T, Millam J. Gaussview version 5.0.8, vol. 235. Wallingford (CT): Gaussian, Inc; 2009.
  • Morris GM, Huey R, Lindstrong W, et al. Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;16:2785–2791.
  • Koopmans TA. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica. 1934;1:104–113.
  • Grahm PJ, Lindsey RV, Pashall GW, et al. Some acyl ferrocenes and their reactions. J Am Chem Soc. 1957;79:3416–3420.
  • Wang P-A. (S)-1-Ferrocenyl-3-hy-droxy-3-phenyl-propan-1-one. Acta Crystallogr Sect E. 2011;67(Pt 2):m183.
  • Muskinja J, Burmudzija A, Ratkovic Z, et al. Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med Chem Res. 2016;25:1744–1753.
  • Delgado Rivera SM, González Espiet JC, Dones JM, et al. Crystal structure of 1-ferrocenyl-2-(4-nitro­phen­yl)ethyne. Acta Crystallograph Sect E. 2020;76:1403–1406.
  • Tremayne M, Grice L, Pyatt JC, et al. Characterization of complicated new polymorphs of chlorothalonil by X-ray diffraction and computer crystal structure prediction. J Am Chem Soc. 2004;126:7071–7081.
  • Linglu Q, Yang G, Gu H. Phase quantification of two chlorothalonil polymorphs by X-ray powder diffraction. Anal Chim Acta. 2005;538:291–296.
  • Sato H, Dybal J, Murakami R, et al. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J Mol Struct. 2005;744–747:35–46.
  • Roeges NPG. A guide to complete interpretation of infrared spectra of organic structures. New York: John Wiley & Sons Inc; 1994.
  • Krishnakumar V, Prabavathi N, Muthunatesan S. Density functional theory study of vibrational spectra, and assignment of fundamental vibrational modes of 1-bromo 4-fluoronaphthalene. Spectrochim Acta Part A. 2008;70:991–996.
  • Bellamy LJ. The infrared spectra of complex molecules. New York: Wiley; 1975.
  • Varsanyi G. Assignments of vibrational spectra of 700 benzene derivatives. New York: Wiley; 1974.
  • Socrates G. Infrared and Raman characteristic group frequencies. Chicheste: John Wiley & Sons Ltd; 2001.
  • Mohammadi N, Ganesan A, Chantler CT, et al. Differentiation of ferrocene D5d and D5h conformers using IR spectroscopy. J Organomet Chem. 2012;713:51–59.
  • Silverstein RM, Webster FX. Spectrometric identification of organic compounds. New York: John Wiley and Sons; 2003.
  • Varsanyi G. Assignments for vibrational spectra of seven hundred benzene derivaties, Vol. I. London: Adam Hilger; 1974.
  • Stuart BH. Infrared spectroscopy: fundamentals and applications. London: John Wiley & Sons; 2004.
  • Chandra S, Saleem H, Sundaraganesan N, et al. The spectroscopic FT-IR gas phase, FT-IR, FT-Raman, polarizabilities analysis of Naphthoic acid by density functional methods. Spectrochim Acta Part A. 2009;74:704–713.
  • Smith BC. Infrared spectral interpretation: a systematic approach. New York: CRC Press; 1999.
  • Hobza P, Havlas Z. Blue-shifting hydrogen bonds. Chem Rev. 2000;100:4253–4264.
  • Issaoui N, Rekik N, Oujia B, et al. Anharmonic effects on theoretical IR line shapes of medium strong H(D) bonds. Quant Chem. 2009;109:483–499.
  • Issaoui N, Rekik N, Oujia B, et al. Theoretical infrared line shapes of H-bonds within the strong anharmonic coupling theory and Fermi resonances effects. Quant Chem. 2010;110:2583–2602.
  • Rekik N, Issaoui N, Oujia B, et al. Theoretical IR spectral density of H-bond in liquid phase: combined effects of anharmonicities, fermi resonances, direct and indirect relaxations. J Mol Liq. 2008;141:104–109.
  • Dollish FR, Fateley WG, Bentley FF. Characteristic Raman frequencies of organic compounds. New York: Wiley; 1973.
  • Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1990.
  • Socrates G. Infrared characteristic group frequencies. New York: John Wiley & Sons; 1980.
  • Szafran M, Komasa A, Adamska EB. Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J Mol Struct. 2007;827:101–107.
  • James C, Raj A, Reghunathan R, et al. Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N,N-dimethyl benzylidene)cyclohexanone using density functional theory. J Raman Spectrosc. 2006;37:1381–1392.
  • Kosar B, Albayrak C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta. 2011;78:160–167.
  • MarshanRobert H, Usha D, Amalanathan M, et al. A spectroscopic (IR, Raman, UV, NMR) characterization and investigation of reactive properties of pyrazine-2-carboxamide by anti-bacterial, anti-mycobacterial, fukui function, molecular docking and DFT calculations. Chem Data Coll. 2020;30:100583–100595.
  • Marshan Robert H, Usha D, Amalanathan M, et al. Vibrational spectral, density functional theory and molecular docking analysis on 4-nitrobenzohydrazide. J Mol Struct. 2020;1223:128948–128959.
  • Rosso TE, Elzy MW, Jensen JO, et al. Vibrational frequencies and structural determinations of 1,4-dithiane. Spectrochim Acta. 1998;55:121–134.
  • Scrocco E, Tomasi J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quant Chem. 1978;11:115–193.
  • Luque FJ, Lopez JM, Orozco M. Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Acc. 2000;103:343–345.
  • Okulik N, Jubert AH. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electr J Mol Des. 2005;4:17–30.
  • Gupta VP, Sharma A, Virdi V, et al. Structural and spectroscopic studies on some chloropyrimidine derivatives by experimental and quantumchemical methods. Spectrochim Acta Part A. 2006;64:57–67.
  • Raveendran Pillai R, Menon VV, Shyma Mary Y, et al. Vibrational spectroscopic investigations, molecular dynamic simulations and molecular docking studies of N-diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide. J Mol Struct. 2017;1130:208–222.
  • Chattaraj PK, Maiti B, Sarkar U. Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A. 2003;107:4973–4975.
  • Morell C, Grand A, Toro-Labbe A. New dual descriptor for chemical reactivity. J Phys Chem A. 2005;109:205–212.
  • O’Boyle NM, Tenderholt AL, Langer KM. Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845.
  • Layana SR, Saritha SR, Anitha L, et al. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice. J Mol Struct. 2018;1157:579–586.
  • Chen M, Waghmare UV, Friend CM, et al. A density functional study of clean and hydrogen-covered α-MoO3(010): electronic structure and surface relaxation. J Chem Phys. 1998;109:6854–6860.
  • Bernstein FC, Koetzle TF, Williams GJ, et al. The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112:535–542.
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19:1639–1662.
  • Huey R, Morris GM, Olson AJ, et al. A semiempirical free energy force field with charge-based desolvation. J Comput Chem. 2007;28:1145–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.