579
Views
2
CrossRef citations to date
0
Altmetric
Articles

Porous material adsorbents ZIF-8, ZIF-67, Co/Zn-ZIF and MIL-127(Fe) for separation of H2S from a H2S/CH4 mixture

, , , &
Pages 417-426 | Received 19 Apr 2021, Accepted 15 Dec 2021, Published online: 20 Jan 2022

References

  • Payne JE. A survey of the electricity consumption-growth literature. Appl Energy. 2010;87(3):723–731.
  • Zsuzsanna Csereklyei M-V, David IS. Energy and economic growth: the stylized facts. Energy J. 2016;37(Number 2).
  • Waheed R, Sarwar S, Wei C. The survey of economic growth, energy consumption and carbon emission. Energy Reports. 2019;5:1103–1115.
  • Liu Y, Wei X, Xiao J, et al. Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers. Global Energy Interconnect. 2020;3(3):272–282.
  • Ahmad T, Zhang D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports. 2020;6:1973–1991.
  • Ajmi AN, Hammoudeh S, Nguyen DK, et al. On the relationships between CO2 emissions, energy consumption and income: the importance of time variation. Energy Econ. 2015;49:629–638.
  • Bilgen S. Structure and environmental impact of global energy consumption. Renew Sustain Energy Rev. 2014;38:890–902.
  • Tahvonen O, Salo S. Economic growth and transitions between renewable and nonrenewable energy resources. European Econ Rev. 2001;45(8):1379–1398.
  • Praveen RP, Keloth V, Abo-Khalil AG, et al. An insight to the energy policy of GCC countries to meet renewable energy targets of 2030. Energy Policy. 2020;147:111864.
  • Amri F. Renewable and non-renewable categories of energy consumption and trade: do the development degree and the industrialization degree matter? Energy. 2019;173:374–383.
  • Shahbaz M, Raghutla C, Chittedi KR, et al. The effect of renewable energy consumption on economic growth: evidence from the renewable energy country attractive index. Energy. 2020;207:118162.
  • Dogan E, Altinoz B, Madaleno M, et al. The impact of renewable energy consumption to economic growth: a replication and extension of Inglesi-Lotz (2016). Energy Econom. 2020;90:104866.
  • Adams S, Klobodu EKM, Apio A. Renewable and non-renewable energy, regime type and economic growth. Renew Energy. 2018;125:755–767.
  • How much carbon dioxide is produced when different fuels are burned? https://www.eia.gov/tools/faqs/faq.php?id=73&t=11.
  • Busch C, Gimon E. Natural gas versus coal: is natural gas etter for the climate? Electric J. 2014;27(7):97–111.
  • Saeid Mokhatab WAP. Handbook of natural gas transmission and processing. 2nd ed. Gulf Professional Publishing; 2012.
  • Faramawy S, Zaki T, Sakr AAE. Natural gas origin, composition, and processing: a review. J Natural Gas Sci Eng. 2016;34:34–54.
  • Zaman J, Chakma A. Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol. 1995;41(2):159–198.
  • Gutierrez JP, Benitez LA, Ale Ruiz EL, et al. A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J Natural Gas Sci Eng. 2016;31:800–807.
  • Gabrielli P, Gazzani M, Mazzotti M. On the optimal design of membrane-based gas separation processes. J Membrane Sci. 2017;526:118–130.
  • Lau CH, Li P, Li F, et al. Reverse-selective polymeric membranes for gas separations. Progr Polymer Sci. 2013;38:740–766.
  • Liu G, Li N, Miller SJ, et al. Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation. Angew Chem Int Ed. 2016;55(44):13754–13758.
  • Pandey P, Chauhan RS. Membranes for gas separation. Progr Polymer Sci. 2001;26(6):853–893.
  • Nurul N, M Z, Jamaliah J SM, et al. Overview of H2S removal technologies from biogas production. Int J Appl Eng Res. 2016;11(7).
  • Wu H, Shen M, Chen X, et al. New absorbents for hydrogen sulfide: deep eutectic solvents of tetrabutylammonium bromide/carboxylic acids and choline chloride/carboxylic acids. Sep Purif Technol. 2019;224:281–289.
  • Song C, Liu Q, Ji N, et al. Natural gas purification by heat pump assisted MEA absorption process. Appl Energy. 2017;204:353–361.
  • Suleiman B, Abdulkareem AS, Abdulsalam YO, et al. Thermo-economic analysis of natural gas treatment process using triethanolamine (TEA) and diethanolamine (DEA) as gas sweeteners. J Natural Gas Sci Eng. 2016;36:184–201.
  • Oshima K, Kadonaga R, Shiba M, et al. Adsorption and catalytic decomposition of dimethyl sulfide on H-BEA zeolite. Int J Hydrogen Energy. 2020;45(51):27644–27652.
  • Haider J, Saeed S, Qyyum MA, et al. Simultaneous capture of acid gases from natural gas adopting ionic liquids: challenges, recent developments, and prospects. Renew Sustain Energy Rev. 2020;123:109771.
  • Rallapalli PBS, Cho K, Kim SH, et al. Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101(Cr) as adsorbent to remove CO2 and H2S from the gas. Fuel. 2020;281:118985.
  • Watanabe S. Chemistry of H2S over the surface of common solid sorbents in industrial natural gas desulfurization. Catalysis Today. 2020.
  • Lu HT, Kanehashi S, Scholes CA, et al. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. J Membrane Sci. 2017;539:432–440.
  • Ahmad F, Mukhtar H, Man Z, et al. A theoretical analysis of non-chemical separation of hydrogen sulfide from methane by nano-porous membranes using capillary condensation. Chem Eng Process Process Intensification. 2008;47(12):2203–2208.
  • Kanehashi S, Aguiar A, Lu HT, et al. Effects of industrial gas impurities on the performance of mixed matrix membranes. J Membrane Sci. 2018;549:686–692.
  • Hamad F, Qahtani M, Ameen A, et al. Treatment of highly sour natural gas stream by hybrid membrane-amine process: techno-economic study. Sep Purif Technol. 2020;237:116348.
  • Kárászová M, Vejražka J, Veselý V, et al. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane. Sep Purif Technol. 2012;89:212–216.
  • Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J Amer Chem Soc. 2010;132(44):15562–15564.
  • Hertäg L, Bux H, Caro J, et al. Diffusion of CH4 and H2 in ZIF-8. J Membrane Sci. 2011;377(1):36–41.
  • Samarasinghe SASC, Chuah CY, Yang Y, et al. Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. J Membrane Sci. 2018;557:30–37.
  • Erucar I, Keskin S. High-throughput molecular simulations of metal organic frameworks for CO2 separation: opportunities and challenges. 2018;5(4).
  • Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations. Chem Rev. 2012;112(2):869–932.
  • Fritzsche S, Chokbunpiam T, Caro J, et al. Combined adsorption and reaction in the ternary mixture N2, N2O4, NO2 on MIL-127 examined by computer simulations. ACS Omega. 2020;5(22):13023–13033.
  • Wang S, Wu D, Huang H, et al. Separation science and engineering. Chinese J Chem Eng. 2015;23(8):1291–1299.
  • Sheikh Alivand M, Hossein Tehrani NHM, Shafiei-alavijeh M, et al. Synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity. J Environ Chem Eng. 2019;7(2):102946.
  • Sokhanvaran V, Gomar M, Yeganegi S. H2s separation from biogas by adsorption on functionalized MIL-47-X (X = −OH and − OCH3): A simulation study. Appl Surf Sci. 2019;479:1006–1013.
  • Maghsoudi H, Soltanieh M. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J Membrane Sci. 2014;470:159–165.
  • Heck HH, Hall ML, dos Santos R, et al. Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X. Sep Sci Technol. 2018;53(10):1490–1497.
  • Chanajaree R, Chokbunpiam T, Kärger J, et al. Investigating adsorption- and diffusion selectivity of CO2 and CH4 from air on zeolitic imidazolate framework-78 using molecular simulations. Micro Meso Mater. 2019;274:266–276.
  • Chokbunpiam T, Chanajaree R, Caro J, et al. Separation of nitrogen dioxide from the gas mixture with nitrogen by use of ZIF materials; computer simulation studies. Comput Mater Sci. 2019;168:246–252.
  • Schierz P, Fritzsche S, Janke W, et al. MD simulations of hydrogen diffusion in ZIF-11 with a force field fitted to experimental adsorption data. Micro Meso Mater. 2015;203:132–138.
  • Chokbunpiam T, Fritzsche S, Caro J, et al. Importance of ZIF-90 lattice flexibility on diffusion, permeation, and lattice structure for an adsorbed H2/CH4 gas mixture: a re-examination by Gibbs ensemble monte carlo and molecular dynamics simulations. J Phys Chem C. 2017;121(19):10455–10462.
  • Pongsajanukul P, Parasuk V, Fritzsche S, et al. Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) metal organic framework. Chem Phys. 2017;491:118–125.
  • Chokbunpiam T, Fritzsche S, Parasuk V, et al. Molecular simulations of a CO2/CO mixture in MIL-127. Chem Phys Lett. 2018;696:86–91.
  • Panagiotopoulos AZ, Quirke N, Stapleton M, et al. Phase equilibria by simulation in the Gibbs ensemble. Mol Phys. 1988;63(4):527–545.
  • Daan Frenkel BS. Understanding molecular simulation. 2 nd ed. Academic Press; 2001.
  • Theodorou DN. Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res. 2010;49(7):3047–3058.
  • Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of monte carlo codes. Mol Simul. 2013;39(14–15):1253–1292.
  • Peng D-Y, R DB. A new two-constant equation of state. Ind Eng Chem Fund. 1976;15(1):6.
  • Rull LF, Jackson G, Smit B. The condition of microscopic reversibility in Gibbs ensemble Monte Carlo simulations of phase equilibria. Mol Phys. 1995;85(3):435–447.
  • June RL, Bell AT, Theodorou DN. Prediction of low occupancy sorption of alkanes in silicalite. J Phys Chem. 1990;94(4):1508–1516.
  • Myers AL. Thermodynamics of adsorption. In: Letcher T, editor. Chemical thermodynamics for industry. X: The Royal Society of Chemistry; 2004. p. 243–253.
  • Siažik J, Malcho M. Accumulation of primary energy into natural gas hydrates. Proc Eng. 2017;192:782–787.
  • Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci. 2006;103(27):10186.
  • Hayashi H, Côté AP, Furukawa H, et al. Zeolite A imidazolate frameworks. Nature Mater. 2007;6(7):501–506.
  • Zhou K, Mousavi B, Luo Z, et al. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A. 2017;5(3):952–957.
  • Wongsakulphasatch S, Nouar F, Rodriguez J, et al. Direct accessibility of mixed-metal (iii/ii) acid sites through the rational synthesis of porous metal carboxylates. Chem Commun. 2015;51(50):10194–10197.
  • Gücüyener C, van den Bergh J, Gascon J, et al. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal−organic framework ZIF-7 through a gate-opening mechanism. J Amer Chem Soc. 2010;132(50):17704–17706.
  • Aguado S, Bergeret G, Titus MP, et al. Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem. 2011;35(3):546–550.
  • Keil F. Diffusion and chemische reaktionen in der Gas/Feststoff-Katalyse. 1 ed. Berlin, Heidelberg: Springer; 1999.
  • Chokbunpiam T, Fritzsche S, Chmelik C, et al. Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics – confirmed, but at high CO2 pressure. Chem Phys Lett. 2016;648:178–181.
  • Chanut N, Wiersum AD, Lee UH, et al. Observing the effects of shaping on gas adsorption in metal-organic frameworks. Eur J Inorganic Chem. 2016;27:4416–4423.
  • Jameh AA, Mohammadi T, Bakhtiari O, et al. Synthesis and modification of zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas. J Environ Chem Eng. 2019;7(3):103058.
  • Babarao R, Dai S, Jiang D-e. Effect of pore topology and accessibility on gas adsorption capacity in zeolitic−imidazolate frameworks: bringing molecular simulation close to experiment. J Phys Chem C. 2011;115(16):8126–8135.
  • Zhou M, Wang Q, Zhang L, et al. Adsorption sites of hydrogen in zeolitic imidazolate frameworks. J Phys Chem B. 2009;113(32):11049–11053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.