328
Views
0
CrossRef citations to date
0
Altmetric
Articles

Differences in the local anaesthesia effect by lidocaine and bupivacaine based on free energy analysis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 745-751 | Received 06 Oct 2021, Accepted 03 Mar 2022, Published online: 23 Mar 2022

References

  • Butterworth JF, Strichartz GR. T molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990;72:711–734.
  • Strichartz GR. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973;62(1):37–57.
  • Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia. Nature. 1994;367:607–614.
  • Catterall WA, Mackie K. Local anesthetics. 9th. New York: McGraw Hill; 1996.
  • Sheets MF, Hanck DA. Molecular action of lidocaine on the voltage sensors of sodium channels. J Gen Physiol. 2003;121:163–175.
  • Lipkind GM, Fozzard HA. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol Pharmacol. 2005;68:1611–1622.
  • Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972;24(4):583–65.
  • Papahadjoupoulos D, Jacobson K, Poste G, et al. Effect of local anesthetics on membrane properties I. Changes in fluidity of phospholipids bilayers. Biochim Biophys Acta Biomembr. 1975;394:504–519.
  • Seelig A, Allegrini PR, Seelig J. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim Biophys Acta Biomembr. 1988;939:267–276.
  • Hata T, Matsuki H, Kaneshina S. Effect of local anesthetics on the bilayer membrane of dipalmitoylphosphatidylcholine: interdigitation of lipid bilayer and vesicle-micelle transition. Biophys Chem. 2000;87:25–36.
  • Fraceto LF, Spisni A, Schreier S, et al. Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements. Biophys Chem. 2005;115:11–18.
  • Hogberg CJ, Lyubartsev AP. Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. Biophys J. 2008;94:525–531.
  • Yi Z, Nagao M, Bossev DP. Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophys Chem. 2012;160:20–27.
  • Jalili S, Saeedi M. Study of procaine and tetracaine in the lipid bilayer using molecular dynamics simulation. Eur Biophys J. 2017;46:265–282.
  • Coster HGL, James VJ, Berthet C, et al. Location and effect of procaine on lecithin/cholesterol membranes using X-ray diffraction methods. Biochim Biophys Acta Biomembr. 1981;641:281–285.
  • Boulanger Y, Schreier S, Smith ICP. Molecular details of anesthetic-lipid interaction as seen by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry. 1981;20:6824–6830.
  • Auger M, Smith ICP, Jarrell HC. Interactions of the local anesthetic tetracaine with glyceroglycolipid bilayers: a 2H-NMR study. Biochim Biophys Acta Biomembr. 1989;981:351–357.
  • Ueda I, Chiou JS, Krishna PR, et al. Local anesthetics destabilize lipid membranes by breaking hydration shell – infrared and calorimetry studies. Biochim Biophys Acta Biomembr. 1994;1190:421–429.
  • Ueda I, Yoshida T. Hydration of lipid membranes and the action mechanisms of anesthetics and alcohols. Chem Phys Lipids. 1999;101:65–79.
  • Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc Natl Acad Sci. 2002;99(25):16035–16040.
  • Högberg CJ, Maliniak A, Lyubartsev AP. Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. Biophys Chem. 2007;125:416–424.
  • Bernardi RC, Gomes D, Gobato R, et al. Molecular dynamics study of biomembrane/local anesthetics interactions. Mol Phys. 2009;107(14):1437–1443.
  • Mojumdar EH, Lyubartsev AP. Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. Biophys Chem. 2010;153:27–35.
  • Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The interaction of local anesthetics with lipid membranes. J Mol Graph Model. 2014;53:200–205.
  • Saeedi M, Lyubartsev AP, Jalili S. Anesthetics mechanism on a dmpc lipid membrane model: insights from molecular dynamics simulations. Biophys Chem. 2017;226:1–13.
  • da M Neto J, de Alencastro RB. Theoretical studies on local anesthetics: procaine, lidocaine, tetracaine, bupivacaine, and dibucaine – neutral and monoprotonated. Int J Quant Chem. 1997;61:959–980.
  • Martini MF, Pickholz M. Molecular dynamics study ofuncharged bupivacaine enantiomers in phospholipid bilayers. Int J Quantum Chem. 2012;112:3341–3345.
  • Gurtovenko AA, Patra M, Karttunen M, et al. Cationic DMPC/DMPTAP lipid bilayers: molecular dynamics study. Biophys J. 2004;86:3461–3472.
  • McConlogue CW, Vanderlick TK. A close look at domain formation in DPPC monolayers. Langmuir. 1997;13:7158–7164.
  • Kaganer VM, Möhwald H, Dutta P. Structure and phase transitions in Langmuir monolayers. Rev Mod Phys. 1999;71:779–819.
  • Duncan SL, Larson RG. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J. 2008;94:2965–2986.
  • Falck E, Rog T, Karttunen M, et al. Lateral diffusion in lipid membranes through collective flows. J Am Chem Soc. 2008;130:44–45.
  • Chen X, Hua W. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc. 2010;132:11336–11342.
  • Clemente-León M, Coronado E, López-Muñoz A, et al. Patterning of magnetic bimetallic coordination nanoparticles of Prussian blue derivatives by the Langmuir–Blodgett technique. Langmuir. 2012;28:4525–4533.
  • Spivey WH, McNamara RM, MacKenzie R, et al. A clinical comparison of lidocaine and bupivacaine. Ann Emerg Med. 1987 Jul;16(7):752–757.
  • Trovatti E, Silva NHCS, Duarte IF, et al. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules. 2011 Nov;12(11):4162–4168.
  • Kochhar JS, Lim WXS, Zou S, et al. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol Pharm. 2013 Oct;10(11):4272–4280.
  • Pichayakorn W, Boontawee H, Taweepreda W, et al. Physicochemical and drug release characterization of lidocaine-loaded transdermal patches prepared from STR-5l block rubber. Ind Eng Chem Res. 2014 Jan;53(4):1672–1677.
  • Gianolio DA, Philbrook M, Avila LZ, et al. Synthesis and evaluation of hydrolyzable hyaluronan-tethered bupivacaine delivery systems. Bioconjug Chem. 2005 Nov;16(6):1512–1518.
  • Yaghmur A, Rappolt M, Østergaard J, et al. Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir. 2012 Jan;28(5):2881–2889.
  • Weldon C, Ji T, Nguyen MT, et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano. 2018 Oct;13(1):18–25.
  • Sivakumaran D, Maitland D, Hoare T. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules. 2011 Nov;12(11):4112–4120.
  • Ning C, Guo Y, Yan L, et al. On-demand prolongation of peripheral nerve blockade through bupivacaine-loaded hydrogels with suitable residence periods. ACS Biomater Sci Eng. 2018 Dec;5(2):696–709.
  • Alejo T, Uson L, Landa G, et al. Nanogels with high loading of anesthetic nanocrystals for extended duration of sciatic nerve block. ACS Appl Mater Interfaces. 2021 Apr;13(15):17220–17235.
  • Babst CR, Gilling BN. Bupivacaine: a review. Anesth Prog. 1978;25:87–91.
  • Wojnarowska Z, Grzybowska K, Hawelek L, et al. Molecular dynamics studies on the water mixtures of pharmaceutically important ionic liquid lidocaine HCl. Mol Pharm. 2012 Mar;9(5):1250–1261.
  • Dunsky JL, Moore PA. Long-acting local anesthetics: a comparison of bupivacaine and etidocaine in endodontics. J Endon. 1984;10:457–460.
  • Falcón-González JM, Jiménez-Domínguez G, Ortega-Blake I, et al. Multi-phase solvation model for biological membranes: molecular action mechanism of amphotericin B. J Chem Theory Comput. 2017;13:3388–3397.
  • Menichetti R, Kremer K, Bereau T. Efficient potential of mean force calculation from multiscale simulations: solute insertion in a lipid membrane. Biochem Biophys Res Commun. 2018;498(2):282–287.
  • Abraham MJ, van der Spoel D, Lindahl E, et al. Gromacs user manual version 5.1.2.; 2016. Available from: wwwgromacsorg
  • Oosternbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25:1656–1676.
  • Malde AK, Zuo L, Breeze M, et al. An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput. 2011;7:4026–4037.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Intermolecular forces. Dordrecht: D. Reidel; 1981.
  • Manual GROMACS reference; 2021. Available from https://manual.gromacs.org/current/reference-manual/introduction.html#energy-minimization-and-search-methods
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):Article ID 014101.
  • Darden T, York D, Pedersen L. Particle mesh ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.
  • Manual MMPSM reference; 2017. Available from http://tripplab.com/tools/mmpsm
  • Villa A, Mark AE. Calculation of the free energy of solvation for neutral analogs of amino acid side chains. J Comput Chem. 2002;23:548–553.
  • Rizzi A, Jensen T, Slochower DR, et al. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations. J Comput Aided Mol Des. 2020;34(5):601–633.
  • Minh DDL, Adib AB. Optimized free energies from bidirectional single-molecule force spectroscopy. Phys Rev Lett. 2008;100(18):Article ID 180602.
  • Mark AE. Encyclopedia of Computational Chemistry. In: von Ragué, Schleyer P, Allinger NL, editors. Free energy Vol. 2. Chichester: John Wiley & Sons; 1998. p. 1070–1083.
  • Hess B. Determining the shear viscosity of model liquids from molecular simulations. J Chem Phys. 2002;116:209–217.
  • Avdeef A, Box K, Comer J, et al. Determination of liposomal membrane-water partition coefficients of lonizable drugs. Pharm Res. 1998;15:209–215.
  • Cantor RS. Lipid composition and the lateral pressure profile in bilayers. Biophys J. 1999 May;76(5):2625–2639.
  • Carrillo-Tripp M, Feller SE. Evidence for a mechanism by which omega-3 polyunsaturated lipids may affect membrane protein function. Biochemistry. 2005 Aug;44(30):10164–10169.
  • Cantor RS. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B. 1997 Mar;101(10):1723–1725.
  • Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 2004 Jun;86(6):3496–3509.
  • Cantor RS. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997 Mar;36(9):2339–2344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.