106
Views
1
CrossRef citations to date
0
Altmetric
Articles

Examination of critical grain size of isotropic nanocrystalline iron through molecular dynamics analysis

ORCID Icon & ORCID Icon
Pages 976-990 | Received 04 Oct 2021, Accepted 21 Mar 2022, Published online: 06 Apr 2022

References

  • Yang L, Tao NR, Lu K, et al. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr Mater. 2013;68(10):801–804.
  • Huang HW, Wang ZB, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150–160.
  • Huang HW, Wang ZB, Yong XP, et al. Enhancing Torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment. Mater Sci Technol (United Kingdom). 2013;29(10):1200–1205.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science (80-.). 2011;331(6024):1587–1590.
  • Weertman JR. Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A. 1993;166(1–2):161–167.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):1–13.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556.
  • Van Swygenhoven H, Caro A, Farkas D. Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: A molecular dynamics study. Scr Mater. 2001;44(8–9):1513–1516.
  • Hasnaoui A, Derlet PM, Van Swygenhoven H. Interaction between dislocations and grain boundaries under an indenter - A molecular dynamics simulation. Acta Mater. 2004;52(8):2251–2258.
  • Subedi S, Handrigan SM, Morrissey LS, et al. Mechanical properties of nanocrystalline aluminium: A molecular dynamics investigation. Mol Simul. 2020;46:12:898–904.
  • Frøseth A, Van Swygenhoven H, Derlet PM. The influence of twins on the mechanical properties of Nc-Al. Acta Mater. 2004;52(8):2259–2268.
  • Yamakov V, Wolf D, Phillpot SR, et al. Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos Mag Lett. 2003;83(6):385–393.
  • Kadau K, Germann TC, Lomdahl PS, et al. Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum. Metall Mater Trans A Phys Metall Mater Sci. 2004;35 A(9):2719–2723.
  • Schiøtz J, Vegge T, Di Tolla FD, et al. Atomic-Scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B - Condens Matter Mater Phys. 1999;60(17):11971–11983.
  • Lund AC, Schuh CA. Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 2005;53(11):3193–3205.
  • Latapie A, Farkas D. Effect of grain size on the elastic properties of nanocrystalline α-iron. Scr Mater. 2003;48(5):611–615.
  • Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391(6667):561–563.
  • Derlet PM, Van Swygenhoven H. Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scr Mater. 2002;47(11):719–724.
  • Simmons G., Wang H. Single crystal elastic constants and calculated aggregate properties: a handbook: M.I.T. Press, Cambridge, Mass.; 1971.
  • Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun. 2015;197:212–219.
  • Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171.
  • Jensen BD, Wise KE, Odegard GM. The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. J Comput Chem. 2015;36(21):1587–1596.
  • Handrigan SM, Morrissey LS, Nakhla S. Investigating various many-body force fields for their ability to predict reduction in elastic modulus due to vacancies using molecular dynamics simulations. Mol Simul. 2019;45(16):1341–1352.
  • Morrissey LS, Handrigan SM, Subedi S, et al. Atomistic uniaxial tension tests: Investigating various many-body potentials for their ability to produce accurate stress strain curves using molecular dynamics simulations. Mol Simul. 2019;45(6):501–508.
  • Chamati H, Papanicolaou NI, Mishin Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(100). Surf Sci. 2006;600(9):1793–1803.
  • Morrissey LS, Nakhla S. Considerations when calculating the mechanical properties of single crystals and bulk polycrystals from molecular dynamics simulations. Mol Simul. 2020;46(18):1433–1442.
  • Khan AS, Zhang H, Takacs L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int J Plast. 2000;16(12):1459–1476.
  • Jeon JB, Lee BJ, Chang YW. Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr Mater. 2011;64(6):494–497.
  • FuPing Y. SCIENCE CHINA physics, mechanics & astronomy atomistic simulation study of tensile deformation in bulk nano-crystalline Bcc iron. Sci China-Phys Mech Astron. 2012;55(9):1657–1663.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2009;18(1):15012.
  • Malow TR, Koch CC. Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metall Mater Trans A Phys Metall Mater Sci. 1998;29(9):2285–2295.
  • Malow TR, Koch CC. Mechanical properties in tension of mechanically attrited nanocrystalline iron by the use of the miniaturized disk bend test. Acta Mater. 1998;46(18):6459–6473.
  • Fields RJ, Weerasooriya T, Ashby MF. Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel. Metall Trans A. 1980;11(2):333–347.
  • Grüneisen E. 1. Die elastischen Konstanten Der Metalle Bei Kleinen deformationen. II. Torsionsmodul, Verhältnis von Querkontraktion Zu Längsdilatation Und Kubische Kompressibilität. Ann Phys. 1908;330(5):825–851.
  • Köster W, Franz H. Poisson’s ratio for metals and alloys. Metall Rev. 1961;6(1):1–56.
  • Rida A, Rouhaud E, Makke A, et al. Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples. Philos Mag. 2017;97(27):2387–2405.
  • Clatterbuck DM, Chrzan DC, Morris JW. The inherent tensile strength of iron. Philos Mag Lett. 2002;82(3):141–147.
  • Brenner SS. Tensile strength of whiskers. J Appl Phys. 1956;27(12):1484–1491.
  • Milstein F. Theoretical strength of a perfect crystal. Phys Rev B. 1971;3(4):1130–1141.
  • Friák M, Sob M, Vitek V. “Ab initio calculation of tensile strength in iron. Philosophical Magazine, Taylor & Francis Group 83. 2003: 3529–3537.
  • Clatterbuck DM, Chrzan DC, Morris JW. The ideal strength of iron in tension and shear. Acta Mater. 2003;51(8):2271–2283.
  • Van Swygenhoven H, Caro A, Farkas D. A molecular dynamics study of polycrystalline Fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation. Mater Sci Eng A. 2001;309–310:440–444.
  • Zhou K, Liu B, Yao Y, et al. Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater Sci Eng A. 2014;615:92–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.