304
Views
2
CrossRef citations to date
0
Altmetric
Articles

Mechanical properties of boron nitride nano-sheet reinforced aluminium nanocomposite: a molecular dynamics study

ORCID Icon, , , &
Pages 1003-1016 | Received 26 Jul 2021, Accepted 27 Mar 2022, Published online: 14 Apr 2022

References

  • Zhi C, Tang C, Terao T, et al. Boron nitride nanotubes and nanosheets. ACS Nano. 2010;4:2979–2993.
  • Falin A, Cai Q, Santos EJG, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun [Internet]. 2017;8:1–9. https://doi.org/http://doi.org/10.1038/ncomms15815.
  • Li LH, Chen Y. Atomically thin boron nitride: unique properties and applications. Adv Funct Mater. 2016;26:2594–2608.
  • Jiang XF, Weng Q, Bin WX, et al. Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J Mater Sci Technol. 2015;31:589–598.
  • Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters. 2010;10:3209–3215.
  • Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012;4:6908–6939.
  • Paciĺ D, Meyer JC, Girit Ç, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett. 2008;92:1–4.
  • Kumar R, Parashar A. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale. 2016;8:22–49.
  • White P. Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions. Int J Fatigue. 2012;44:141–150.
  • Montazeri A, Ebrahimi S, Rafii-Tabar H. A molecular dynamics investigation of buckling behaviour of hydrogenated graphene. Mol Simul. 2015;41:1212–1218.
  • Xiong Q, Tian X. Atomistic simulations of interfacial mechanical characteristics of carbon nanotube/silicon nanocomposites. Mol Simul. 2014;7022:1–9.
  • Mortazavi B, Rémond Y. Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Physica E: Low-Dimens Syst Nanostruct. 2012;44:1846–1852.
  • Li N, Ding N, Qu S, et al. Mechanical properties and failure behavior of hexagonal boron nitride sheets with nano-cracks. Comput Mat Sci. 2017;140:356–366.
  • Ding Q, Ding N, Liu L, et al. Investigation on mechanical performances of grain boundaries in hexagonal boron nitride sheets. Int J Mech Sci. 2018;149:262–272.
  • Nasrabadi AT, Foroutan M. Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J Phys Chem B. 2010;114:15429–15436.
  • Kumar R, Parashar A. Effect of geometrical defects and functionalization on the interfacial strength of h-BN/polyethylene based nanocomposite. Polymer. 2018;146:82–90.
  • Silvestre N, Faria B, Canongia Lopes JN. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Compo Sci Technol. 2014;90:16–24.
  • Cao C, Mukherjee S, Howe JY, et al. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Science Advances. 2018;4:1–9.
  • Mortazavi B, Rémond Y, Ahzi S, et al. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Comput Mat Sci. 2012;53:298–302.
  • Rezaei R, Shariati M, Tavakoli-Anbaran H. Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations. J Mat Res. 2018;33:1733–1741.
  • Cong Z, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos Struct [Internet]. 2018;194:80–86. https://doi.org/https://doi.org/10.1016/j.compstruct.2018.03.103.
  • Sedigh P, Zare A, Montazeri A. Evolution in aluminum applications by numerically-designed high strength boron-nitride/Al nanocomposites. ComputMatSci. 2020;171:109227.
  • https://lammps.sandia.gov.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • https://www.ovito.org/.
  • Rong Y, He HP, Zhang L, et al. Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by graphene nanoplatelets. Comput Mat Sci. 2018;153:48–56.
  • Mishin Y, Farkas D. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B - Condens Matter Mater Phys. 1999;59:3393–3407.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B. 1989;39:5566–5568.
  • Le MQ, Nguyen DT. Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater Sci Eng A. 2014;615:481–488.
  • Zhang YY, Pei QX, Sha ZD, et al. A molecular dynamics study of the mechanical properties of h-BCN monolayer using a modified Tersoff interatomic potential. Physics Letters, Section A: general. Atomic and Solid State Physics. 2019;383:2821–2827.
  • White A. Intermolecular potentials of mixed systems : testing the Lorentz-Berthelot mixing rules with ab initio calculations. DSTO-TN-0302. 2000.
  • Zhou Y, Jiang WG, Feng XQ, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs. Comput Mater Sci. 2019;156:396–403.
  • Fereidoon A, Khorasani M, Ganji MD, et al. Atomistic simulation study of mechanical properties of periodic graphene nanobuds. Comput Mater Sci. 2015;107:163–169.
  • Weng S, Ning H, Fu T, et al. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci Rep. 2018;8:1–10.
  • Pei QX, Zhang YW, Shenoy VB. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon. 2010;48:898–904.
  • Ward DK, Curtin WA, Qi Y. Mechanical behavior of aluminum-silicon nanocomposites: a molecular dynamics study. Acta Materialia. 2006;54:4441–4451.
  • Choi BK, Yoon GH, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Compos B: Eng [Internet]. 2016;91:119–125. https://doi.org/http://doi.org/10.1016/j.compositesb.2015.12.031.
  • Natsuki T, Natsuki J. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model. Appl Phys A: Mater Sci Process. 2017;123:1–6.
  • Le MQ. Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int J Mech Mater Des. 2015;11:15–24.
  • Le MQ, Umeno Y. Fracture of monolayer boronitrene and its interface with graphene. Int J Fracture. 2017;205:151–168.
  • Şahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B - Condens Matter Mater Phys. 2009;80:1–12.
  • Jo YH, Choi WM, Kim DG, et al. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V 10 Cr 10 Fe 45 Co x Ni 35−x medium-entropy alloys. Scientific Reports. 2019;9:1–14.
  • Srivastava A, Kumar D. A continuum model to study interphase effects on elastic properties of CNT/GS-nanocomposite. Mater Res Express. 2017;4:025036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.