316
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development of coarse-grained potential of silica species

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1343-1355 | Received 17 Dec 2021, Accepted 31 May 2022, Published online: 22 Jun 2022

References

  • Ruiz AZ, Brühwiler D, Ban T, et al. Synthesis of zeolite L. Tuning size and morphology. Monatsh Chem. 2005;136:77.
  • Jain R, Rimer JD. Seed-assisted zeolite synthesis: the impact of seeding conditions and interzeolite transformations on crystal structure and morphology. Micro Meso Mat. 2020;300:110174.
  • Forest L, Gibiat V, Woignier T. Chemical and structural evolution of silica alcogels during their formation: acoustical study. J Sol–Gel Sci Technol. 1998;13:329.
  • Khan MN, Auerbach SM, Monson PA. Lattice Monte Carlo simulations in search of zeolite analogues: effects of structure directing agents. J Phys Chem C. 2015;119:28046.
  • Bogush GH, Tracy MA, Zukoski CF. Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids. 1988;104:95.
  • Argauer RJ, Landolt GR. Crystalline zeolite ZSM-5 and method of preparing the same. US patent 3,702,886. 1972.
  • Zhang HR, Liu HY, Jiang Y, et al. Morphology-controlled synthesis of ZSM-5/MCM-41 composite zeolite. Appl Mech Mater. 2014;599:77.
  • Li S, Li J, Dong M, et al. Strategies to control zeolite particle morphology. Chem Soc Rev. 2019;48:885.
  • Drews TO, Tsapatsis M. Progress in manipulating zeolite morphology and related applications. Curr Opin Colloid Interface Sci. 2005;10:233.
  • Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core-shell materials. Adv Mater. 2018;30:1704439.
  • Chen L-H, Sun M-H, Wang Z, et al. Hierarchically structured zeolites: from design to application. Chem Rev. 2020;120:11194.
  • Jonscher C, Seifert M, Kretzschmar N, et al. Origin of morphology change and effect of crystallization time and Si/Al ratio during synthesis of zeolite ZSM-5. ChemCatChem. 2021, ASAP, DOI:10.1002/cctc.202101248
  • Hamilton KE, Coker EN, Sacco Jr A, et al. The effects of the silica source on the crystallization of zeolite NaX. Zeolites. 1993;13:645.
  • Zhang J, Li X, Liu J, et al. A comparative study of MFI zeolite derived from different silica sources: synthesis, characterization and catalytic performance. Catalysts. 2019;9:13.
  • Larlus O, Valtchev VP. Control of the morphology of all-silica BEA-type zeolite synthesized in basic media. Chem Mater. 2005;17:881.
  • Kley M, Kempter A, Boyko V, et al. Mechanistic studies of silica polymerization from supersaturated aqueous solutions by means of time-resolved light scattering. Langmuir. 2014;30:12664.
  • Iwakai K, Tago T, Konno H, et al. Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Micro Meso Mat. 2011;141:167.
  • Travaglini L, De Cola L. Morphology control of mesoporous silica particles using bile acids as cosurfactants. Chem Mater. 2018;30:4168.
  • Zhao D, Szostak R, Kevan L. Role of alkali-metal cations and seeds in the synthesis of silica-rich heulandite-type zeolites. J Mater Chem. 1998;8:233.
  • Kadja GT, Kadir IR, Fajar AT, et al. Revisiting the seed-assisted synthesis of zeolites without organic structure-directing agents: insights from the CHA case. RSC Adv. 2020;10:5304.
  • Zhang X, Tang D, Zhang M, et al. Synthesis of NaX zeolite: influence of crystallization time, temperature and batch molar ratio SiO 2/Al 2O 3 on the particulate properties of zeolite crystals. Powder Technol. 2013;235:322.
  • Purnomo CW, Salim C, Hinode H. Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash. Micro Meso Mat. 2012;162:6.
  • Kovo A. Effect of temperature on the synthesis of zeolite X from Ahoko Nigerian kaolin using novel metakaolinization technique. Chem Engg Commun. 2012;199:786.
  • Saad N, Al-Mawla M, Moubarak E, et al. Surface-functionalized silica aerogels and alcogels for methylene blue adsorption. RSC Adv. 2015;5:6111.
  • Zhang Z, Wang S, Waterhouse GI, et al. Poly (N-isopropylacrylamide)/mesoporous silica thermosensitive composite hydrogels for drug loading and release. J Appl Polym Sci. 2020;137:48391.
  • Zhao D, Li D, Quan F, et al. Rapidly thermoreversible and biodegradable polypeptide hydrogels with sol–gel–sol transition dependent on subtle manipulation of side groups. Biomacromolecules. 2021;22:3522.
  • Madduma-Bandarage US, Madihally SV. Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci. 2021;138:50376.
  • Chen Y, Sepahvand S, Gauvin F, et al. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Constr Build Mater. 2021;293:123289.
  • Babiarczuk B, Lewandowski D, Szczurek A, et al. Novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol-gel process and phase separation. J Supercrit Fluid. 2020;166:104997.
  • Devreux F, Boilot JP, Chaput F, et al. Sol-gel condensation of rapidly hydrolyzed silicon alkoxides: A joint 29Si NMR and small-angle x-ray scattering study. Phys Rev A. 1990;41:6901.
  • Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. Part I: energies and conformations of simple clusters. J Phys Chem A. 1999;103:3252.
  • Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. Part II: structures and energies of complex clusters. J Phys Chem A. 1999;103:3268.
  • Mora-Fonz MJ, Catlow CRA, Lewis DW. Oligomerization and cyclization processes in the nucleation of microporous silicas. Angew Chem Int Ed. 2005;44:3082.
  • Corminboeuf C, Tran F, Weber J. The role of density functional theory in chemistry: some historical landmarks and applications to zeolites. J Mol Struct. 2006;762:1.
  • Feuston BP, Garofalini SH. Oligomerization in silica sols. J Phys Chem. 1990;94:5351.
  • Garofalini SH, Martin G. Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem. 1994;98:1311.
  • Cramer CJ. Essentials of computational chemistry: theories and models. West Sussex: John Wiley & Sons; 2013.
  • Leimkuhler B, Matthews C. Molecular dynamics. London: Springer; 2016.
  • Rao NZ, Gelb LD. Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B. 2004;108:12418.
  • Dupuis R, Beland LK, Pellenq RJM. Molecular simulation of silica gels: formation, dilution, and drying. Phys Rev Mater. 2019;3:075603.
  • Schumacher C, Gonzalez J, Wright PA, et al. Generation of atomistic models of periodic mesoporous silica by kinetic Monte Carlo simulation of the synthesis of the material. J Phys Chem B. 2006;110:319.
  • Malani A, Auerbach SM, Monson PA. Probing the mechanism of silica polymerization at ambient temperatures using Monte Carlo simulations. J Phys Chem Lett. 2010;1:3219.
  • Malani A, Auerbach SM, Monson PA. Monte Carlo simulations of silica polymerization and network formation. J Phys Chem C. 2011;115:15988.
  • Shere I, Malani A. Polymerization kinetics of a multi-functional silica precursor studied using a novel Monte Carlo simulation technique. Phys Chem Chem Phys. 2018;20:3554.
  • Shere I, Malani A. Porosity development in silica particles during polymerization: effect of solvent reactivity and precursor concentration. J Phys Chem C. 2020;124:520.
  • Astala R, Auerbach SM, Monson PA. Density functional theory study of silica zeolite structures: stabilities and mechanical properties of SOD, LTA, CHA, MOR, and MFI. J Phys Chem B. 2004;108:9208.
  • Ibrahim IA, Zikry A, Sharaf MA. Preparation of spherical silica nanoparticles: stober silica. J Am Sci. 2010;6:985.
  • Kragten DD, Fedeyko JM, Sawant KR, et al. Structure of the silica phase extracted from silica/(TPA) OH solutions containing nanoparticles. J Phys Chem B. 2003;107:10006.
  • Fedeyko JM, Rimer JD, Lobo RF, et al. Spontaneous formation of silica nanoparticles in basic solutions of small tetraalkylammonium cations. J Phys Chem B. 2004;108:12271.
  • Rimer JD, Trofymluk O, Navrotsky A, et al. Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem Mater. 2007;19:4189.
  • Perez-Sanchez G, Chien S-C, Gomes JR, et al. Multiscale model for the templated synthesis of mesoporous silica: the essential role of silica oligomers. Chem Mater. 2016;28:2715.
  • Perez-Sanchez G, Gomes JR, Jorge M. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids. Langmuir. 2013;29:2387.
  • Kumar A, Zare M, Molinero V. Assembly of zeolitic crystals from a model of mesogenic patchy nanoparticles. J Phys Chem C. 2018;123:971.
  • Kumar A, Nguyen AH, Okumu R, et al. Could mesophases play a role in the nucleation and polymorph selection of zeolites?. J Am Chem Soc. 2018;140:16071.
  • Kumar A, Molinero V. Two-step to one-step nucleation of a zeolite through a metastable gyroid mesophase. J Phys Chem Lett. 2018;9:5692.
  • Dhabal D, Bertolazzo AA, Molinero V. Coarse-grained model for the hydrothermal synthesis of zeolites. J Phys Chem C. 2021;125:26857.
  • Berendsen H, Grigera J, Straatsma T. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269.
  • Emami FS, Puddu V, Berry RJ, et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem Mater. 2014;26:2647.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19.
  • Miyamoto S, Kollman PAS. An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13:952.
  • Henderson RL. A uniqueness theorem for fluid pair correlation functions. Phys Lett A. 1974;49:197.
  • Allen M, Tildesley D. Computer simulation of liquids. New York: Oxford Science Publ; 1989.
  • Frenkel D, Smit B. Understanding mol. simulat. Orlando: Academic Press; 1996.
  • Mirzoev A, Lyubartsev A. MagiC: Software package for multiscale coarse grained modelling. https://bitbucket.org/magic-su/magic-3/src/default/ (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.