268
Views
0
CrossRef citations to date
0
Altmetric
Articles

A polarisable force field for bio-compatible ionic liquids based on amino acids anions

&
Pages 1650-1659 | Received 04 May 2022, Accepted 03 Aug 2022, Published online: 23 Aug 2022

References

  • Gontrani L. Choline-amino acid ionic liquids: past and recent achievements about the structure and properties of these really “green” chemicals. Biophys Rev. 2018;10:873–880.
  • Gomes JM, Silva SS, Reis RL. Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev. 2019;48:4317–4335.
  • Fedotova MV, Kruchinin SE, Chuev GN. Features of local ordering of biocompatible ionic liquids: the case of choline-based amino acid ionic liquids. J Mol Liq. 2019;296:112081.
  • Moshikur R, Chowdhury R, Moniruzzaman M, et al. Biocompatible ionic liquids and their applications in pharmaceutics. Green Chem. 2020;22:8116–8139.
  • Dhattarwal HS, Kashyap HK. Unique and generic structural features of cholinium amino acid-based biocompatible ionic liquids. Phys Chem Chem Phys. 2021;23:10662–10669.
  • Le Donne A, Bodo E. Cholinium amino acid-based ionic liquids. Biophys Rev [Internet]. 2021. [cited 2021 Jan 14]; Available from: http://link.springer.com/10.1007s12551-021-00782-0.
  • Zubeltzu J, Formoso E, Rezabal E. Lignin solvation by ionic liquids: the role of cation. J Mol Liq. 2020;303:112588.
  • Stettner T, Balducci A. Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Storage Mater. 2021;40:402–414.
  • Jónsson E. Ionic liquids as electrolytes for energy storage applications – a modelling perspective. Energy Storage Mater. 2020;25:827–835.
  • Kobzar YL, Fatyeyeva K. Ionic liquids as green and sustainable steel corrosion inhibitors: recent developments. Chem Eng J. 2021;425:131480.
  • Xu P, Liang S, Zong M-H, et al. Ionic liquids for regulating biocatalytic process: achievements and perspectives. Biotechnol Adv. 2021;51:107702.
  • Krishnan A, Gopinath KP, Vo D-VN, et al. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environ Chem Lett. 2020;18:2031–2054.
  • Paucar NE, Kiggins P, Blad B, et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environ Chem Lett. 2021;19:1205–1228.
  • Liu F, Yu J, Qazi AB, et al. Metal-Based ionic liquids in oxidative desulfurization: a critical review. Environ Sci Technol. 2021;55:1419–1435.
  • Shaikh AR, Ashraf M, AlMayef T, et al. Amino acid ionic liquids as potential candidates for CO2 capture: combined density functional theory and molecular dynamics simulations. Chem Phys Lett. 2020;745:137239.
  • Alizadeh V, Esser L, Kirchner B. How is CO2 absorbed into a deep eutectic solvent? J Chem Phys. 2021;154:094503.
  • Wang L, Zhang Y, Liu Y, et al. SO2 absorption in pure ionic liquids: solubility and functionalization. J Hazard Mater. 2020;392:122504.
  • Cho C-W, Pham TPT, Zhao Y, et al. Review of the toxic effects of ionic liquids. Sci Total Environ. 2021;786:147309.
  • Chen Y, Mu T. Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chem Eng. 2021;2:174–186.
  • Magina S, Barros-Timmons A, Ventura SPM, et al. Evaluating the hazardous impact of ionic liquids – challenges and opportunities. J Hazard Mater. 2021;412:125215.
  • Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev. 2020;12:1187–1215.
  • Benedetto A. Room-temperature ionic liquids meet bio-membranes: the state-of-the-art. Biophys Rev. 2017;9:309–320.
  • Benedetto A, Ballone P. Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics. ACS Sustain Chem Eng. 2016;4:392–412.
  • Zandu SK, Chopra H, Singh I. Ionic liquids for therapeutic and drug delivery applications. Curr Drug Res Rev. 2020;12:26–41.
  • Saptal VB, Bhanage BM. Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide. ChemSusChem. 2017;10:1145–1151.
  • Baaqel H, Díaz I, Tulus V, et al. Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents. Green Chem. 2020;22:3132–3140.
  • Asim AM, Uroos M, Muhammad N. Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Adv. 2020;10:44003–44014.
  • Stettner T, Lingua G, Falco M, et al. Protic ionic liquids-based crosslinked polymer electrolytes: a new class of solid electrolytes for energy storage devices. Energy Technol. 2020;8:2000742.
  • Gerlach P, Burges R, Lex-Balducci A, et al. Aprotic and protic ionic liquids as electrolytes for organic radical polymers. J Electrochem Soc. 2020;167:120546.
  • Sivapragasam M, Moniruzzaman M, Goto M. An overview on the toxicological properties of ionic liquids toward microorganisms. Biotechnol J. 2020;15:1900073.
  • Bui-Le L, Clarke CJ, Bröhl A, et al. Revealing the complexity of ionic liquid–protein interactions through a multi-technique investigation. Commun Chem. 2020;3:55.
  • Wakayama R, Uchiyama S, Hall D. Ionic liquids and protein folding – old tricks for new solvents. Biophys Rev. 2019;11:209–225.
  • Lim GS, Klähn M. On the stability of proteins solvated in imidazolium-based ionic liquids studied with replica exchange molecular dynamics. J Phys Chem B. 2018;122:9274–9288.
  • Kirchner B. Ionic liquids from theoretical investigations. In: Kirchner B, editor. Ion Liq [Internet]. Berlin, Heidelberg: Springer; 2008. p. 213–262. [cited 2022 Mar 4]. Available from: http://link.springer.com/10.1007128_2008_36.
  • Amith WD, Araque JC, Margulis CJ. A pictorial view of viscosity in ionic liquids and the link to nanostructural heterogeneity. J Phys Chem Lett. 2020;11:2062–2066.
  • Adenusi H, Le Donne A, Porcelli F, et al. Ab initio molecular dynamics study of phospho-amino acid-based ionic liquids: formation of zwitterionic anions in the presence of acidic side chains. J Phys Chem B. 2020;124:1955–1964.
  • Campetella M, Bodo E, Montagna M, et al. Theoretical study of ionic liquids based on the cholinium cation. Ab initio simulations of their condensed phases. J Chem Phys. 2016;144:104504.
  • Campetella M, Bodo E, Caminiti R, et al. Interaction and dynamics of ionic liquids based on choline and amino acid anions. J Chem Phys. 2015;142:234502.
  • Kirchhecker S, Esposito D. Amino acid based ionic liquids: a green and sustainable perspective. Curr Opin Green Sustain Chem. 2016;2:28–33.
  • Yan T, Burnham CJ, Del Pópolo MG, et al. Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. J Phys Chem B. 2004;108:11877–11881.
  • Schröder C. Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys Chem Chem Phys. 2012;14:3089.
  • Bedrov D, Piquemal J-P, Borodin O, et al. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem Rev. 2019;119:7940–7995.
  • Tu Y-J, Lin Z, Allen MJ, et al. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]). J Chem Phys. 2018;148:024503.
  • Philippi F, Goloviznina K, Gong Z, et al. Charge transfer and polarisability in ionic liquids: a case study. Phys Chem Chem Phys. 2022;24:3144–3162.
  • Szabadi A, Elfgen R, Macchieraldo R, et al. Comparison between ab initio and polarizable molecular dynamics simulations of 1-butyl-3-methylimidazolium tetrafluoroborate and chloride in water. J Mol Liq. 2021;337:116521.
  • Bodo E. Perspectives in the computational modeling of New generation, biocompatible ionic liquids. J Phys Chem B. 2022;126:3–13.
  • McDaniel JG, Yethiraj A. Understanding the properties of ionic liquids: electrostatics, structure factors, and their Sum rules. J Phys Chem B. 2019;123:3499–3512.
  • Vázquez-Montelongo EA, Vázquez-Cervantes JE, Cisneros GA. Current status of AMOEBA–IL: a multipolar/polarizable force field for ionic liquids. Int J Mol Sci. 2020;21:697.
  • Goloviznina K, Canongia Lopes JN, Costa Gomes M, et al. Transferable, polarizable force field for ionic liquids. J Chem Theory Comput. 2019;15:5858–5871.
  • Dommert F, Wendler K, Berger R, et al. Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. ChemPhysChem. 2012;13:1625–1637.
  • Schröder C. Proteins in ionic liquids: current status of experiments and simulations. Top Curr Chem. 2017;375:25.
  • Goloviznina K, Gong Z, Padua AAH. The CL&Pol polarizable force field for the simulation of ionic liquids and eutectic solvents. WIRES Comput Mol Sci [Internet]. 2021. [cited 2021 Oct 6]; Available from: https://onlinelibrary.wiley.com/doi/10.1002wcms.1572.
  • Goloviznina K, Gong Z, Costa Gomes MF, et al. Extension of the CL&Pol polarizable force field to electrolytes, protic ionic liquids, and deep eutectic solvents. J Chem Theory Comput. 2021;17:1606–1617.
  • Jaffrelot Inizan T, Célerse F, Adjoua O, et al. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chem Sci. 2021;12:4889–4907.
  • Ponder JW, Wu C, Ren P, et al. Current status of the AMOEBA polarizable force field. J Phys Chem B. 2010;114:2549–2564.
  • Zhang C, Lu C, Jing Z, et al. AMOEBA polarizable atomic multipole force field for nucleic acids. J Chem Theory Comput. 2018;14:2084–2108.
  • Burnham CJ, Li J, Xantheas SS, et al. The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n  = 2–21) and the phonon spectrum of ice Ih. J Chem Phys. 1999;110:4566–4581.
  • Wu JC, Chattree G, Ren P. Automation of AMOEBA polarizable force field parameterization for small molecules. Theor Chem Acc. 2012;131:1138.
  • Seeger ZL, Izgorodina EI. A systematic study of DFT performance for geometry optimizations of ionic liquid clusters. J Chem Theory Comput. 2020;16:6735–6753.
  • Rackers JA, Wang Z, Lu C, et al. Tinker 8: software tools for molecular design. J Chem Theory Comput. 2018;14:5273–5289.
  • Hollóczki O, Malberg F, Welton T, et al. On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. Phys Chem Chem Phys. 2014;16:16880–16890.
  • Campetella M, Montagna M, Gontrani L, et al. Unexpected proton mobility in the bulk phase of cholinium-based ionic liquids: new insights from theoretical calculations. Phys Chem Chem Phys. 2017;19:11869–11880.
  • Lin Y-S, Li G-D, Mao S-P, et al. Long-Range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput. 2013;9:263–272.
  • Shil S, Herrmann C. Performance of range-separated hybrid exchange-correlation functionals for the calculation of magnetic exchange coupling constants of organic diradicals. J Comput Chem. 2018;39:780–787.
  • Benedetto A, Bodo E, Gontrani L, et al. Amino acid anions in organic ionic compounds: an ab initio study of selected Ion pairs. J Phys Chem B. 2014;118:2471–2486.
  • Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev. 1994;94:1887–1930.
  • Turney JM, Simmonett AC, Parrish RM, et al. Psi4: an open-source ab initio electronic structure program: Psi4: an electronic structure program. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:556–565.
  • Jolly L-H, Duran A, Lagardère L, et al. Raising the performance of the Tinker-HP Molecular Modeling Package [Article v1.0]. Living J Comput Mol Sci [Internet]. 2019 [cited 2022 Feb 25];1. Available from: https://www.livecomsjournal.org/article/10409-raising-the-performance-of-the-tinker-hp-molecular-modeling-package-article-v1-0.
  • Tao D-J, Cheng Z, Chen F-F, et al. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids. J Chem Eng Data. 2013;58:1542–1548.
  • De Santis S, Masci G, Casciotta F, et al. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization. Phys Chem Chem Phys. 2015;17:20687–20698.
  • Le Donne A, Adenusi H, Porcelli F, et al. Hydrogen bonding as a clustering agent in protic ionic liquids: like-charge vs opposite-charge dimer formation. ACS Omega. 2018;3:10589–10600.
  • Hollóczki O, Macchiagodena M, Weber H, et al. Triphilic ionic-liquid mixtures: fluorinated and Non-fluorinated aprotic ionic-liquid mixtures. ChemPhysChem. 2015;16:3325–3333.
  • Brehm M, Thomas M, Gehrke S, et al. TRAVIS – a free analyzer for trajectories from molecular simulation. J Chem Phys. 2020;152:164105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.