300
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Isotropic pressure-induced electronic band structure of BaTiO3, SrTiO3 and CaTiO3 with its impact on structural and optical properties: ab-initio calculation

& ORCID Icon
Pages 12-26 | Received 24 Jun 2022, Accepted 30 Aug 2022, Published online: 19 Sep 2022

References

  • Kreuer KD. Proton-conducting oxides. Annu Rev Mater Res. 2003;33(1):333–359.
  • Babilo P, Haile SM. Enhanced sintering of yttrium-doped barium zircon ate by addition of ZnO. J Am Ceram Soc. 2005;88(9):2362–2368.
  • Qin G, Peng X, Zhang G, et al. Effects of internal relaxation under in plane strain on the structural, electronic and optical properties of perovskite BaZrO3. J Wuhan Univ Technol Mater Sci Ed. 2017;32(2):397–402.
  • Disallow FJ. Thermoelectric cooling and power generation. Science. 1999;285(5428):703–706.
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. In: Vincent Dusastre, editor. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. London, United Kingdom : World Scientific; 2011. p. 101–110.
  • Dresselhaus MS, Chen G, Tang MY, et al. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19(8):1043–1053.
  • Vineis CJ, Shakouri A, Majumdar A, et al. Nanostructured thermoelectric: big efficiency gains from small features. Adv Mater. 2010;22(36):3970–3980.
  • Komodo K, Terasaki I, Funahashi R. Complex oxide materials for potential thermoelectric applications. MRS Bull. 2006;31(3):206–210.
  • Komodo K, Wang Y, Zhang R, et al. Oxide thermoelectric materials: a nano structuring approach. Ann Rev Mater Res. 2010;40:363–394.
  • Ohta H, Kim S, Mune Y, et al. Giant thermoelectric See beck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater. 2007;6(2):129–134.
  • Shenoy US, Bhat DK. Enhanced thermoelectric properties of vanadium doped SrTiO3: a resonant dopant approach. J Alloys Compd. 2020;832:154958.
  • Cui Z, Zhang X, Chen D, et al. Theoretical study on the interaction between SF6 molecule and BaTiO3 (001) surface: a DFT study. Appl Surf Sci. 2019;483:409–416.
  • Islam MA, Momin MA, Nesa M. Effect of Fe doping on the structural, optical and electronic properties of BaTiO3: DFT based calculation. Chin J Phys. 2019;60:731–738.
  • Ching-Prado E. DFT pressured BaTiO3 calculation using WC and HSE functional and ONCV pseudo potentials. Ferroelectrics. 2021;584(1):51–69.
  • Gillani SSA, Zeeshan T, Maqsood A, et al. A systematic computational study to understand the effect of metals (Mg, Ca, Sr) doping and external isotropic static pressure on phase stability, electronic band structure and optical properties of KNbO3. Mater Sci Eng B. 2021;271:115261.
  • Fritsch D. Electronic and optical properties of sodium niobate: a density functional theory study. Adv Mater Sci Eng. 2018: 1–9.
  • Yamamoto M, Ohta H, Koumoto K. Thermoelectric phase diagram in a CaTiO3–Sr TiO3–BaTiO3 system. Appl Phys Lett. 2007;90(7):072101.
  • Pan W, Cao M, Jan A, et al. High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO3 ceramics via synergy manipulation. J Mater Chem C. 2020;8(6):2019–2027.
  • Eglitis RI. Comparative ab initio calculations of SrTiO3 and CaTiO3 polar (111) surfaces. Phys Status Solidi B. 2015;252(3):635–642.
  • Itie JP, Couzinet B, Polian A, et al. Pressure-induced disappearance of the local rhombohedra distortion in BaTiO3. Euro Phys Lett. 2006;74(4):706.
  • Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892.
  • Mohammed MH, Al-Asadi AS, Hanoon FH. Electronic structure and band gap engineering of bilayer grapheme nano flakes in the presence of nitrogen, boron and boron nitride impurities. Superlattices Microstruct. 2019;129:14–19.
  • Madsen GK, Singh DJ. Boltztrap. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175(1):67–71.
  • Zeba I, Kiran R, Shakil M, et al. Study the effect of magnesium doping concentration on structural and optoelectronic response of NaCa1-xMgxF3 fluoro-perovskite: first-principles computation. Optik. 2020;218:164990.
  • Tahiri O, Kassou S, Mrabet R. First principles calculations of electronic and optical properties for mixed perovskites: Ba (1-x) Ca (x) TiO3 and Ba (1-x) Sr (x) TiO3 (x = 0.4, 0.6). Mater Devices. 2018;3:2004–2018.
  • Bhat DK, Shenoy US. Zn: a versatile resonant dopant for SnTe thermoelectric. Mater Today Phys. 2019;11:100158.
  • Bell RA. Conduction in carbon nanotube networks: large-scale theoretical simulations. Switzerland: Springer; 2015.
  • Sun X, Li X, Zeng Y, et al. Improving the stability of perovskite by covering grapheme on FAPbI3 surface. Int J Energy Res. 2021;45(7):10808–10820.
  • Rizwan M, Zeba I, Shakil M, et al. Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): insight from DFT calculation. Optic. 2020;211:164611.
  • Yang X, Li Q, Liu R, et al. Structural phase transition of BaZrO3 under high pressure. J Appl Phys. 2014;115(12):124907.
  • Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64(4):1045.
  • Piskunov S, Heifets E, Eglitis RI, et al. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci. 2004;29(2):165–178.
  • Moriwake H, Fisher CA, Kawabata A. First-principles calculations of rare-earth dopants in BaTiO3. Jpn J Appl Phys. 2009;48(9S1):09KC03.
  • Evarestov RA. Hybrid density functional theory LCAO calculations on phonons in Ba (Ti, Zr, Hf). Phys Rev B. 2011;83(1):014105.
  • Evarestov RA, Bandura AV. First-principles calculations on the four phases of BaTiO3. J Comput Chem. 2012;33(11):1123–1130.
  • Khenata R, Sahnoun M, Baltache H, et al. First-principle calculations of structural, electronic and optical properties of BaTiO3 and BaZrO3 under hydrostatic pressure. Solid State Commun. 2005;136:120.
  • Ghosez P, Cockayne E, Waghmare UV, et al. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: a comparative first-principles study. Phys Rev B. 1999;60(2):836.
  • Alam NN, Malik NA, Samat MH, et al. Underlying mechanism of surface (001) cubic ATiO3 (A=Pb, Sn) in enhancing thermoelectric performance of thin-film application using density functional theory. Surf Interfaces. 2021;27:101524.
  • Hachemi A, Hachemi H, Ferhat-Hamida A, et al. Elasticity of SrTiO3 perovskite under high pressure in cubic, tetragonal and orthorhombic phases. Phys Scr. 2010;82(2):025602.
  • Hellberg CS, Andersen KE, Li H, et al. Structure of SrTiO3 films on Si. Phys Rev Lett. 2012;108(16):166101.
  • Woicik JC, Li H, Zschack P, et al. Anomalous lattice expansion of coherently strained SrTiO3 thin films grown on Si (001) by kinetically controlled sequential deposition. Phys Rev B. 2006;73(2):024112.
  • Cohen RE. Origin of ferro electricity in perovskite oxides. Nature. 1992;358(6382):136–138.
  • Eglitis RI, Piskunov S, Heifets E, et al. Ab initio study of the SrTiO3, BaTiO3 and PbTiO3 (001) surfaces. Ceram Int. 2004;30(7):1989–1992.
  • Wu X, Qin S, Wu Z. Generalized gradient approximation calculations of the pressure-induced phase transition of YAlO3 perovskite. J Phys Condens Matter. 2006;18(16):3907.
  • Zhong W, Vanderbilt D, Rabe KM. Phase transitions in BaTiO3 from first principles. Phys Rev Lett. 1994;73(13):1861.
  • Cappellini G, Bouette-Russo S, Amadon B, et al. Structural properties and quasiparticle energies of cubic SrO, MgO and SrTiO3. J Phys Condens Matters. 2000;12(15):3671.
  • Qasim I, Kennedy BJ, Andreev M. Stabilizing the orthorhombic perovskite structure in SrIrO3 through chemical doping. Synthesis, structure and magnetic properties of SrIr1−xMgxO3 (0.20 ≤ x ≤ 0.33). J Mater Chem A. 2013;1(42):13357–13362.
  • Yong L, Li-Hong N, Gang X, et al. Phase transition in PbTiO3 under pressure studied by the first-principles method. Phys B. 2008;403(21-22):3863–3866.
  • Hosseini SM, Movlarooy T, Kompany A. First-principles calculations of the cohesive energy and the electronic properties of PbTiO3. Phys B. 2007;391(2):316–321.
  • Gillani SSA, Ahmad R, Zeba I, et al. Effect of external pressure on the structural stability, electronic structure, band gap engineering and optical properties of LiNbO3: an ab-initio calculation. Mater Today Commun. 2020;23:100919.
  • Saha S, Sinha TP, Mukherjee A. Electronic structure, chemical bonding, and optical properties of par electric BaTiO3. Phys Revs B. 2000;62(13):8828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.