138
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Acetaminophen and mepirizole molecular adsorption studies on novel ζ – phosphorene nanotube based on first-principles investigation

&
Pages 99-108 | Received 16 Mar 2022, Accepted 10 Sep 2022, Published online: 22 Sep 2022

References

  • Jaeschke H, Murray FJ, Monnot AD, et al. Assessment of the biochemical pathways for acetaminophen toxicity: implications for its carcinogenic hazard potential. Regul Toxicol Pharm. 2021;120:104859. doi:10.1016/j.yrtph.2020.104859.
  • https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen.
  • Chiew AL, Buckley NA. Acetaminophen poisoning. Crit Care Clin. 2021;37:543–561. doi:10.1016/j.ccc.2021.03.005.
  • Verlicchi P, Al Aukidy M, Galletti A, et al. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ. 2012;430:109–118. doi:10.1016/j.scitotenv.2012.04.055.
  • Vo HNP, Koottatep T, Chapagain SK, et al. Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes. J Environ Manage. 2019;250:109526. doi:10.1016/j.jenvman.2019.109526.
  • Kumari S, Kumar RN. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere. 2021;273:128571. doi:10.1016/j.chemosphere.2020.128571.
  • Natarajan R, Banerjee K, Kumar PS, et al. Performance study on adsorptive removal of acetaminophen from wastewater using silica microspheres: kinetic and isotherm studies. Chemosphere. 2021;272:129896. doi:10.1016/j.chemosphere.2021.129896.
  • Sirois JE. Comprehensive investigation evaluating the carcinogenic hazard potential of acetaminophen. Regul Toxicol Pharm. 2021;123:104944. doi:10.1016/j.yrtph.2021.104944.
  • Negarestani M, Motamedi M, Kashtiaray A, et al. Simultaneous removal of Acetaminophen and ibuprofen from underground water by an electrocoagulation unit: operational parameters and kinetics. Groundw Sustain Dev. 2022;11:100474. doi:10.1016/j.gsd.2020.100474.
  • Kollarahithlu SC, Balakrishnan RM. Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Prod. 2021;294:126155. doi:10.1016/j.jclepro.2021.126155.
  • Grace AA, Dharuman V, Hahn JH. Gdtio3 perovskite modified graphene composite for electrochemical simultaneous sensing of Acetaminophen and Dopamine. J Alloys Compd. 2021;886:161256. doi:10.1016/j.jallcom.2021.161256.
  • https://pubchem.ncbi.nlm.nih.gov/compound/Epirizole.
  • Tanaka H, Ueki S, Ohno T, et al. Pathogenic mechanisms involved in mepirizole-lnduced duodenal damage in the Rat. Jpn J Pharmacol. 1986;42:383–396. doi:10.1254/jjp.42.383.
  • Japundzic I, Levi E, Rakic-Stojiljkovic L. Effect of duodenal ulcerogens mepirizole and propionitrile on small intestinal and liver alkaline phosphatase activity in rats. Digestion. 1990;47:61–70. doi:10.1159/000200478.
  • Wen W, Song Y, Yan X, et al. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater Today. 2018;21:164–177. doi:10.1016/j.mattod.2017.09.001.
  • Li J, Wan C, Wang C, et al. 2D material chemistry: graphdiyne-based biochemical sensing. Chem Res Chin Univ. 2020;36:622–630. doi:10.1007/s40242-020-0181-4.
  • Zhang S, Xie M, Li F, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed. 2015;55:1666–1669. doi:10.1002/anie.201507568.
  • Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-Gap transitions. Angew Chem. 2015;127:3155–3158. doi:10.1002/ange.201411246.
  • Yang W, Lyu Q, Zhao J, et al. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci China Mater. 2020;63:2397–2428. doi:10.1007/s40843-020-1387-7.
  • Ersan F, Kecik D, Özçelik VO, et al. Two-dimensional pnictogens: A review of recent progresses and future research directions. Appl Phys Rev. 2019;6:021308, doi:10.1063/1.5074087.
  • Huang Z, Liu H, Hu R, et al. Structures, properties and application of 2D monoelemental materials (Xenes) as graphene analogues under defect engineering. Nano Today. 2020;35:100906. doi:10.1016/j.nantod.2020.100906.
  • Zhou Y, Zhang M, Guo Z, et al. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater Horiz. 2017;4:997–1019. doi:10.1039/c7mh00543a.
  • Zhu Y, Xie Z, Li J, et al. From phosphorus to phosphorene: applications in disease theranostics. Coord Chem Rev. 2021;446:214110. doi:10.1016/j.ccr.2021.214110.
  • Abbas AN, Liu B, Chen L, et al. Black phosphorus gas sensors. ACS Nano. 2015;9:5618–5624. doi:10.1021/acsnano.5b01961.
  • Han WH, Kim S, Lee I-H, et al. Prediction of green phosphorus with tunable direct band gap and high mobility. J Phys Chem Lett. 2017;8:4627–4632. doi:10.1021/acs.jpclett.7b02153.
  • Gazzari S, Wrighton-Araneda K, Cortés-Arriagada D. A first-principles description of the stability of transition-metal doped phosphorene nanosheets. Surf Interfaces. 2020;21:100786. doi:10.1016/j.surfin.2020.100786.
  • Cortés-Arriagada D, Ortega DE. Fullerene–phosphorene–nanoflake nanostructures: modulation of their interaction mechanisms and electronic properties through the size of carbon fullerenes. Carbon. 2021;182:354–365. doi:10.1016/j.carbon.2021.06.036.
  • Loushab SE, Benam MR, Shahri RP, et al. Investigation of the phosphorene nano-sheet as a sensor for detecting aspartic-acid, alanine and glycine amino acids: A first principle study. Physica B. 2021;618:412771, doi:10.1016/j.physb.2020.412771.
  • Zhang B, Mao Z, Wu P. Gas sensing of fibrous red phosphorene towards inorganic air pollutants: insights from first-principles calculations. Appl Surf Sci. 2021;565:150546. doi:10.1016/j.apsusc.2021.150546.
  • Mao Z, Li J, Dong S, et al. External uniaxial and biaxial strains modulated adsorption behaviors of volatile organic compounds on fibrous red phosphorene. Appl Surf Sci. 2021;553:149460. doi:10.1016/j.apsusc.2021.149460.
  • He C, Zhang C, Tang C, et al. Five low energy phosphorene allotropes constructed through gene segments recombination. Sci Rep. 2017;7; doi:10.1038/srep46431.
  • Pan D, Wang T-C, Wang C, et al. Self-assembled chiral phosphorus nanotubes from phosphorene: a molecular dynamics study. RSC Adv. 2017;7:24647–24651. doi:10.1039/c7ra03807k.
  • Ju L, Dai Y, Wei W, et al. Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst. J Mater Chem A. 2018;6:21087–21097. doi:10.1039/c8ta08469f.
  • Vergara JM, Flórez E, Mora-Ramos ME, et al. Effects of single vacancy on electronic properties of blue-phosphorene nanotubes. Mater Res Express. 2020;7:015042. doi:10.1088/2053-1591/ab66a6.
  • Wu M, Fu H, Zhou L, et al. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Lett. 2015;15:3557–3562. doi:10.1021/acs.nanolett.5b01041.
  • Smidstrup S, Markussen T, et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter. 2019;32:015901. doi:10.1088/1361-648x/ab4007.
  • Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B. 1996;54:16533–16539. doi:10.1103/physrevb.54.16533.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi:10.1103/physrevlett.77.3865.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104. doi:10.1063/1.3382344.
  • Nagarajan V, Chandiramouli R. Chlorobenzene and 1, 4-dichlorobenzene adsorption studies on θ-arsenene nanosheet – a first-principles analysis. Mol Phys. 2021;119:e1936248. doi:10.1080/00268976.2021.1936248.
  • Saravanan S, Nagarajan V, Chandiramouli R. Zipper phosphorene as sensing element towards formaldehyde and acetaldehyde – A first-principles insight. J Mol Graphics Modell. 2021;107:107971. doi:10.1016/j.jmgm.2021.107971.
  • Nagarajan V, Chandiramouli R. Adsorption behaviour of trichloropropane and tetrachloroethylene on δ-phosphorene sheets: A first-principles insight. Comput Theor Chem. 2021;1203:113347. doi:10.1016/j.comptc.2021.113347.
  • Li L, Gao E, Wang K, et al. A first-principles study of Ag clusters adsorption on porphyrin-like N4CNT: geometric and electronic properties. Surf Interfaces. 2021;25:101229. doi:10.1016/j.surfin.2021.101229.
  • Wang G, Chen X. Effective active sites of triangular Mo-S nano-catalysts from first-principle calculations. Surf Interfaces. 2021: 101373. doi:10.1016/j.surfin.2021.101373.
  • Zhang WX, Yan HM. He C. g-C6N6 monolayer: A highly sensitive molecule sensor for biomarker volatiles of liver cirrhosis. Appl Surf Sci. 2021;566:150716. doi:10.1016/j.apsusc.2021.150716.
  • Nagarajan V, Chandiramouli R. Sorption studies of sulfadimethoxine and tetracycline molecules on β-antimonene nanotube - A first-principles insight. J Mol Graphics Modell. 2021;108:107988. doi:10.1016/j.jmgm.2021.107988.
  • Ghadiri M, Ghashghaee M, Ghambarian M. Defective phosphorene for highly efficient formaldehyde detection: periodic density functional calculations. Phys Lett A. 2020;384:126792. doi:10.1016/j.physleta.2020.126792.
  • Jyothi MS, Nagarajan V, Chandiramouli R. Interaction studies of dichlobenil and isoproturon on square-octagon phosphorene nanotube based on DFT frame work. Chem Phys Lett. 2021;778:138773. doi:10.1016/j.cplett.2021.138773.
  • Rad AS, Ayub K. Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: A surface study by DFT. Vacuum. 2016;133:70–80. doi:10.1016/j.vacuum.2016.08.017.
  • Zhou Q, Zhang Q, Ju W, et al. The influence of dopants on aW-phase antimonene: theoretical investigations. RSC Adv. 2020;10:6973–6978. doi:10.1039/c9ra10772j.
  • Zhou Q, Ju W, Liu Y, et al. Influence of defects and dopants on the sensitivity of arsenene towards HCN. Appl Surf Sci. 2020;506:144936, doi:10.1016/j.apsusc.2019.144936.
  • Nagarajan V, Chandiramouli R. Molecular adsorption of o-ethyltoluene and phenyl propane on square-octagon phosphorene nanosheet – A first-principles calculation. J Mol Liq. 2021;326:115320. doi:10.1016/j.molliq.2021.115320.
  • Rad AS, Aghaei SM, Poralijan V, et al. Application of pristine and Ni-decorated B12 P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput Theor Chem. 2017;1109:1–9. doi:10.1016/j.comptc.2017.03.030.
  • Huang L, Miao S, Wang X, et al. DFT study of gas adsorbing and electronic properties of unsaturated nanoporous graphene. Mol Simul. 2020;46(11):853–863. doi:10.1080/08927022.2020.1778171.
  • Zhou Q, Su X, Ju W, et al. Adsorption of H2S on graphane decorated with Fe, Co and Cu: a DFT study. RSC Adv. 2017;7:31457–31465. doi:10.1039/c7ra04905f.
  • Jadoon T, Mahmood T, Ayub K. Silver-graphene quantum dots based electrochemical sensor for trinitrotoluene and p-nitrophenol. J Mol Liq. 2020;306:112878. doi:10.1016/j.molliq.2020.112878.
  • Jyothi MS, Nagarajan V, Chandiramouli R. Square-octagon arsenene nanosheet as chemical nanosensor for M-xylene and toluene – A DFT outlook. Comput Theor Chem. 2021;1196:113088, doi:10.1016/j.comptc.2020.113088.
  • Khan S, Sajid H, Ayub K, et al. Adsorption behaviour of chronic blistering agents on graphdiyne; excellent correlation among SAPT, reduced density gradient (RDG) and QTAIM analyses. J Mol Liq. 2020;316:113860. doi:10.1016/j.molliq.2020.113860.
  • Muñoz ADO, Escobedo-Morales A, Skakerzadeh E, et al. Effect of homonuclear boron bonds in the adsorption of DNA nucleobases on boron nitride nanosheets. J Mol Liq. 2021;322:114951. doi:10.1016/j.molliq.2020.114951.
  • Vinodha M, Senthilkumar K. Adsorption of tetracyanoquinodimethane and tetrathiafulvalene on aluminium (100) surface – a first principle study of structural and electronic properties. Mol Simul. 2018;45(6):492–500. doi:10.1080/08927022.2018.1557332.
  • Nagarajan V, Chandiramouli R. Interaction of propionate and ethylamine on kagome phosphorene nanoribbons – A DFT study. Chem Phys. 2021;549:111276. doi:10.1016/j.chemphys.2021.111276.
  • Sajid H, Ayub K, Arshad M, et al. Highly selective acridinium based cyanine dyes for the detection of DNA base pairs (adenine, cytosine, guanine and thymine). Comput Theor Chem. 2019;1163:112509, doi:10.1016/j.comptc.2019.112509.
  • Samadizadeh M, Peyghan AA, Rastegar SF. Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study. Chin Chem Lett. 2015;26:1042–1045. doi:10.1016/j.cclet.2015.05.048.
  • Bhuvaneswari R, Nagarajan V, Chandiramouli R. Interaction studies of nitrotoluene and toluidine molecules on novel square-octagon arsenene nanotubes based on DFT method. J Mol Liq. 2021;325:115260. doi:10.1016/j.molliq.2020.115260.
  • Jyothi MS, Nagarajan V, Chandiramouli R. Interaction studies of benzene and phenol on novel 4–8 arsenene nanotubes – A DFT insight. Comput Theor Chem. 2021;1204:113381. doi:10.1016/j.comptc.2021.113381.
  • Rastegar SF, Peyghan AA, Ghenaatian HR, et al. NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl Surf Sci. 2013;274:217–220. doi:10.1016/j.apsusc.2013.03.019.
  • Hussain T, Mortazavi B, Bae H, et al. Enhancement in hydrogen storage capacities of light metal functionalized Boron–Graphdiyne nanosheets. Carbon. 2019;147:199–205. doi:10.1016/j.carbon.2019.02.085.
  • Bhuvaneswari R, Nagarajan V, Chandiramouli R. Recent advances in arsenene nanostructures towards prediction, properties, synthesis and applications. Surfaces and Interfaces. 2022;28:101610, doi:10.1016/j.surfin.2021.101610.
  • Kaloni TP, Upadhyay Kahaly M, Faccio R, et al. Modelling magnetism of C at O and B monovacancies in graphene. Carbon. 2013;64:281–287. doi:10.1016/j.carbon.2013.07.062.
  • Ma D, Ju W, Li T, et al. Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study. Appl Surf Sci. 2016;371:180–188. doi:10.1016/j.apsusc.2016.02.230.
  • Bhuvaneswari R, Nagarajan V, Chandiramouli R. Chemisorption of sulfaguanidine and sulfanilamide drugs on bismuthene nanosheet based on first-principles studies. Appl Surf Sci. 2021;561:149990. doi:10.1016/j.apsusc.2021.149990.
  • Cui H, Zhang X, Li Y, et al. First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger. Appl Surf Sci. 2019;494:859–866. doi:10.1016/j.apsusc.2019.07.218.
  • Cui H, Yan C, Jia P, et al. Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: A first-principles study. Appl Surf Sci. 2020;512:145759. doi:10.1016/j.apsusc.2020.145759.
  • Maria JP, Bhuvaneswari R, Nagarajan V, et al. Kagome phosphorene molecular device for sensing chloropicrin and phosgene – A first-principles study. Chem Phys Lett. 2021;771:138472. doi:10.1016/j.cplett.2021.138472.
  • Cui H, Jia P, Peng X. Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: A first-principles study. Appl Surf Sci. 2020;513:145863. doi:10.1016/j.apsusc.2020.145863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.